首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Effects of cobalt on the antioxidant status of control and streptozotocin diabetic rat heart and aorta were examined at the second, fourth and sixth week of treatment. Rats were divided into four groups: control, diabetic, control treated with cobalt chloride and diabetic treated with cobalt chloride. Diabetes was induced by tail vein injection of streptozotocin (STZ). Cobalt treatment groups were given 0.5 mM of CoCl(2) in drinking water. The rats in both groups were further subdivided into three groups of six rats each. Rats in these subgroups were studied at 2-week intervals up to 6 weeks. At the end of the experiment, all animals were sacrificed by decapitation, heart and aorta samples were removed for determination of thiobarbituric acid reactive substance (TBARS) level and superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities. It was found that lipid peroxidation levels and antioxidant enzyme activities were increased in the streptozotocin-induced diabetic rats at all times studied. Cobalt treatment of diabetic rats (0.5 mM in drinking water) resulted in attenuation of the increased levels of TBARS and antioxidant enzyme activities in heart and aorta. Thus, the effect of oral administration of cobalt at this dose during the early stage of experimental diabetes can be considered as a consequence of altered endogenous defence mechanisms in heart and aorta.  相似文献   

2.
Inorganic nitrate () and nitrite () are part of the nitrogen cycle in nature. To the general public these anions are generally known as undesired residues in the food chain with potentially carcinogenic effects. Among biologists, these inorganic anions have merely been viewed as inert oxidative end products of endogenous nitric oxide (NO) metabolism. However, recent studies surprisingly show that nitrate and nitrite can be metabolized in vivo to form nitric oxide (NO) and other bioactive nitrogen oxides. This represents an important alternative source of NO especially during hypoxia when the oxygen-dependent l-arginine-NO pathway can be altered. A picture is now emerging suggesting important biological functions of the nitrate-nitrite-NO pathway with profound implications in relation to the diet and cardiovascular homeostasis. Moreover, an increasing number of studies suggest a therapeutic potential for nitrate and nitrite in diseases such as myocardial infarction, stroke, hypertension, renal failure and gastric ulcers.  相似文献   

3.
4.
Triglyceride lipase (TGL) activities in the homogenates of the rat heart muscle were studied. TGL activity per mg protein of heart muscle was the highest in heart muscle homogenate utilizing 2.1 M glycine buffer, pH 8.3 among the assays investigated. The effects of NaCl, serum and heparin on TGL activities in heart muscle homogenates indicated the characteristics of lipoprotein lipase (LPL). Twelve-hour fasting increased heart muscle LPL activity, while enzyme activities in 48 hour- and 72 hour-fasted rats were lower than those in fed rats. LPL activities in heart muscle homogenates in streptozotocin (STZ)-induced diabetic rats either 3 days or 4 weeks after STZ injection, were decreased significantly as compared with those of control rats.  相似文献   

5.
Diabetes mellitus is a chronic condition that continues to increase in both incidence and prevalence. Renin–Angiotensin–Aldosterone System is one of the main modulators of chronic hyperglycaemia and, thus, its influence on tissues. Hyperglycaemia-induced oxidative stress is an important factor in diabetic cardiomyopathy. The present study was carried out on 24 adult male Wistar albino rats (8-week-old and with body masses of 190 ± 10 g). We evaluated the influence of acute administration of zofenopril on ex vivo myocardial function from rats with streptozotocin-induced diabetes mellitus, with a special emphasis on cardiodynamic and oxidative stress parameters in diabetic rat hearts. Rats were divided randomly into two groups (12 animals per group): control non-diabetic animals (C) were healthy rats perfused with 1.5 µM of zofenopril, and STZ-treated diabetic animals (DM) were diabetic animals perfused with 1.5 µM of zofenopril 4 weeks after the induction of diabetes. Our results demonstrated that diabetic rats are characterized by a depressed cardiac performance and that oxidative markers are related to alterations in cardiac function in rats with 4 weeks of STZ-induced diabetes. Additionally, the use of zofenopril as a monotherapy slightly diminished cardiac damage induced by chronic hyperglycaemia. However, long-term follow-up intervention trials are necessary to fully demonstrate the benefit of zofenopril in this context. A challenge for future investigations will be to identify the effects of chronic administration or combination therapy with angiotensin-converting enzyme inhibitors in various models of diabetes.  相似文献   

6.
Majithiya JB  Balaraman R 《Life sciences》2006,78(22):2615-2624
Effect of metformin treatment on blood pressure, endothelial function and oxidative stress in streptozotocin (STZ)-induced diabetes in rats was studied. In vitro effect of metformin on vascular reactivity to various agonist in the presence of metformin in untreated nondiabetic and STZ-diabetic rats were also studied. Sprague-Dawley rats were randomized into nondiabetic and STZ-diabetic groups. Rats were further randomized to receive metformin (150 mg/kg) or vehicle for 4 weeks.Metformin treatment reduced blood pressure without having any significant effect on blood glucose level in STZ-diabetic rats. Enhanced phenylephrine (PE)-induced contraction and impaired acetylcholine (Ach)-induced relaxation in STZ-diabetic rats were restored to normal by metformin treatment. Enhanced Ach-induced relaxation in metformin-treated STZ-diabetic rats was blocked due to pretreatment with 100 μM of -nitro-l-arginine-methyl ester (l-NAME) or 10 μM of methylene blue but not 10 μM of indomethacin. Metformin treatment significantly increased antioxidant enzymes and reduced lipid peroxidation in STZ-diabetic rats. In vitro studies in aortic rings of untreated nondiabetic and STZ-diabetic rats showed that the presence of higher concentration of metformin (1 mM and 10 mM) significantly reduced PE-induced contraction and increased Ach-induced relaxation. Metformin per se relaxed precontracted aortic rings of untreated nondiabetic and STZ-diabetic rats in a dose-dependent manner. Pretreatment with l-NAME or removal of endothelium blocked metformin-induced relaxation at lower concentration (up to 30 μM) but not at higher concentration (above 30 μM). Metformin-induced relaxation was blocked in the presence of 1 mM of 4-aminopyridine, or 1 mM of tetraethylammonium but not in the presence of 100 μM of barium ion or 10 μM of glybenclamide. The restored endothelial function along with direct effect of metformin on aortic rings and reduced oxidative stress contributes to reduced blood pressure in STZ-diabetic rats. From the present study, it can be concluded that metformin administration to STZ-diabetic rats lowers blood pressure, and restores endothelial function.  相似文献   

7.
Kim HJ  Kong MK  Kim YC 《BMB reports》2008,41(10):710-715
This study investigated the effect of Phellodendri Cortex extract on hyperglycemia and diabetic nephropathy in streptozotocin-induced diabetic rats. Male Sprague-Dawley rats were divided into normal control (NC), diabetic control (DC), and diabetic treatment with Phellodendri Cortex extract (DP). Over a 4-week experimental period, Phellodendri Cortex extract was administered orally at 379 mg/kg BW/day. The final fasting serum glucose level, urine total protein level, and relative left kidney weight in the DP group were significantly lower than the DC group. Renal XO and SOD activities in the DP group were significantly lower than the DC group and renal CAT activity in the DP group was significantly higher than the DC group. Tubular epithelial change was reduced in the DP group compared to the DC group. These results indicated that Phellodendri Cortex can reduce glucose level and prevent or retard the development of diabetic nephropathy in streptozotocin-induced diabetic rats.  相似文献   

8.
目的:研究白细胞介素-2(interleukin-2,IL-2)对链脲佐菌素诱导的早期I型糖尿病大鼠离体胸主动脉内皮依赖性舒张功能的影响及其可能机制。方法:雄性SD大鼠(200-250g),随机分成正常对照组,IL-2对照组,糖尿病模型组,低剂量IL-2(5×10^3U·kg^-1·d^-1Sc)处理组,高剂量IL-2(5×10^4U·kg^-1·d^-1Sc)处理组。各组大鼠饲养5周后,取胸主动脉离体灌流并通过PowerLab生物信号采集系统记录张力变化,检测其对乙酰胆碱(ACh)诱导的内皮依赖性舒张反应,及对硝普钠(SNP)诱导的非内皮依赖性舒张反应。并测定血清一氧化氮(NO)含量、总超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GSH-PX)活性。结果:IL-2处理后对糖尿病大鼠血糖无明显影响,但能减少糖尿病引起的体重下降。糖尿病模型组胸主动脉对ACh诱导的舒张反应明显减弱,IL-2能明显改善糖尿病胸主动脉的这一内皮依赖性舒张反应;各组对SNP诱导的非内皮依赖性舒张反应无显著差异。糖尿病大鼠血清No水平显著降低,IL-2处理后能明显提高血清NO水平。但是IL-2处理并不能有效抑制糖尿病大鼠血清SOD及GSH-PX活性的下降。结论:IL-2处理糖尿病大鼠5周后,能显著改善糖尿病大鼠主动脉对ACh诱导的内皮依赖性舒张反应,这可能与其改善内皮功能有关,但与改变抗氧化能力无关。  相似文献   

9.
Involvement of oxidative stress is implicated in the progression of complication of diabetes mellitus. With respect to heart diseases, we have studied role of oxidative stress/antioxidants using rats treated with streptozotocin to induce diabetes (DM). Hemodynamic and echocardiographic measurements showed thickening of the wall and an increase in the internal dimension of the left ventricle (LV) in DM rats at 8th week. Decrease in diastolic posterior wall velocity and rate of LV pressure change, and increase in LV end diastolic pressures also proved cardiac dysfunction. These changes were further developed in DM rats after 12 weeks. Utilizing rat hearts at 8th and 12th weeks, the following estimations were performed. There was a decrease in the activity of Mn-superoxide dismutase (SOD), suggesting abnormal mitochondrial metabolism of reactive oxygen species. The level of glutathione (GSH) decreased concomitant with a decrease in the expression of γ-glutamylcysteine synthetase (γ-GCS). The expression of transforming growth factor-β1 (TGF-β1), known as a growth factor and a suppressor of GSH synthesis, elevated in DM rat hearts. Immunohistochemical estimation showed an increase in type IV collagen in DM hearts. Collectively, it was suggested a linkage between mitochondrial damage to generate reactive oxygen species and inactivation of Mn-SOD and elevation of the expression of TGF-β1 to lead suppression of GSH synthesis and induction of fibrous change for the consequent cardiac dysfunction in DM.  相似文献   

10.
Involvement of oxidative stress is implicated in the progression of complication of diabetes mellitus. With respect to heart diseases, we have studied role of oxidative stress/antioxidants using rats treated with streptozotocin to induce diabetes (DM). Hemodynamic and echocardiographic measurements showed thickening of the wall and an increase in the internal dimension of the left ventricle (LV) in DM rats at 8th week. Decrease in diastolic posterior wall velocity and rate of LV pressure change, and increase in LV end diastolic pressures also proved cardiac dysfunction. These changes were further developed in DM rats after 12 weeks. Utilizing rat hearts at 8th and 12th weeks, the following estimations were performed. There was a decrease in the activity of Mn-superoxide dismutase (SOD), suggesting abnormal mitochondrial metabolism of reactive oxygen species. The level of glutathione (GSH) decreased concomitant with a decrease in the expression of γ-glutamylcysteine synthetase (γ-GCS). The expression of transforming growth factor-β1 (TGF-β1), known as a growth factor and a suppressor of GSH synthesis, elevated in DM rat hearts. Immunohistochemical estimation showed an increase in type IV collagen in DM hearts. Collectively, it was suggested a linkage between mitochondrial damage to generate reactive oxygen species and inactivation of Mn-SOD and elevation of the expression of TGF-β1 to lead suppression of GSH synthesis and induction of fibrous change for the consequent cardiac dysfunction in DM.  相似文献   

11.
12.
Diabetic subjects tend to develop microvascular complications believed to be due to platelet hyperaggregability. This increased platelet sensitivity is though to be the result of an imbalance of PGI2 and TXA2 production in diabetes. This study sought to determine whether megavitamin E supplementation could restore PGI2/TXA2 balance in streptozotocin-diabetic rats. Endogenous release of PGI2 by isolated aorta, determined via radioimmunoassay of its stable metabolite, 6-keto-PGF1 alpha, was significantly greater (P less than 0.05) in rats receiving 100x the normal vitamin E requirement than in untreated diabetic rats. PGI2 synthesis was negatively correlated with plasma glucose levels (r = -0.87, P less than 0.05) in non-fasted rats at sacrifice. Vitamin E supplementation, at both the 10x and the 100x level, significantly depressed (P less than 0.05) thrombin-stimulated synthesis of TXA2 in washed platelet. PGI2 and TXA2 production were expressed as a ratio. Megavitamin E therapy appears to increase this ratio over that seen in the diabetic animal. The data suggest that vitamin E, at high levels, exerts an ameliorating influence of the PGI2/TXA2 imbalance of diabetes.  相似文献   

13.
《Phytomedicine》2014,21(6):807-814
Oxymatrine, a quinolizidine alkaloid, has been widely used for the treatment of hepatitis. In this study, we investigated the hypoglycemic and hypolipidemic effects and new pharmacological activities of oxymatrine, in a high-fat diet and streptozotocin (STZ)-induced diabetic rats. The results demonstrated that oxymatrine could significantly decrease fasting blood glucose, glycosylated hemoglobin (GHb), food and water intake, non-esterified fatty acid (NEFA), total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol levels (LDL-c), and increase serum insulin, liver and muscle glycogen, high density lipoprotein cholesterol (HDL-c), glucagon-like peptide-1 (GLP-1) and muscle glucose transporter-4 (GLUT-4) content in diabetic rats. The results of the histological examinations of the pancreas and liver show that oxymatrine protected the islet architecture and prevented disordered structure of the liver. This study displays that oxymatrine can alleviate hyperglycemia and hyperlipemia in a high-fat diet and STZ-induced diabetic rats might by improving insulin secretion and sensitivity.  相似文献   

14.
This study was designed to investigate the effect of quercetin (QE) on bone minerals and biomechanics in insulin-dependent diabetic rats. Diabetes was induced by 50 mg kg(-1) intraperitoneal streptozotocin (STZ) in a single dose. The rats were randomly allotted into four experimental groups: A (control), B (non-diabetic + QE), C (diabetic), and D (diabetic + QE) each containing 10 animals. The diabetic rats received QE (15 mg kg(-1) day(-1)) for 4 weeks following 8 weeks of STZ injection. Blood samples were taken to determine glucose, insulin, calcium, and magnesium levels. The rats' femora were assessed biomechanically at femoral mid-diaphysis and neck. It was found that QE treatment increased insulin, calcium, and magnesium levels. Three-point bending of the femoral mid-diaphysis and necks showed significantly lower maximum load values (F max) in animals in the STZ group than the QE + STZ or control groups (p < 0.05). The results support the conclusion that QE treatment may decrease blood glucose and increase plasma insulin, calcium, and magnesium. QE treatment may also be effective in bone mineral metabolism, biomechanical strength, and bone structure in STZ-induced diabetic rats.  相似文献   

15.
Molecular and Cellular Biochemistry - Resveratrol (RSV) is a natural polyphenolic compound having antioxidant effects. This study was designed to investigate the protective effects of resveratrol...  相似文献   

16.
Oxidative stress-mediated damage to liver tissue underlies the pathological alterations in liver morphology and function that are observed in diabetes. We examined the effects of the antioxidant action of melatonin against necrosis-inducing DNA damage in hepatocytes of streptozotocin (STZ)-induced diabetic rats. Daily administration of melatonin (0.2 mg/kg) was initiated 3 days before diabetes induction and maintained for 4 weeks. Melatonin-treated diabetic rats exhibited improved markers of liver injury (P?<?0.05), alkaline phosphatase, and alanine and aspartate aminotransferases. Melatonin prevented the diabetes-related morphological deterioration of hepatocytes, DNA damage (P?<?0.05), and hepatocellular necrosis. The improvement was due to containment of the pronecrotic oxygen radical load, observed as inhibition (P?<?0.05) of the diabetes-induced rise in lipid peroxidation and hydrogen peroxide increase in the liver. This was accompanied by improved necrotic markers of cellular damage: a significant reduction in cleavage of the DNA repair enzyme poly(ADP-ribose) polymerase 1 (PARP-1) into necrotic 55- and 62-kDa fragments, and inhibition of nucleus-to-cytoplasm translocation and accumulation in the serum of the high-mobility group box 1 (HMGB1) protein. We conclude that melatonin is hepatoprotective in diabetes. It reduces extensive DNA damage and resulting necrotic processes. Melatonin application could thus present a viable therapeutic option in the management of diabetes-induced liver injury.  相似文献   

17.
Oxidative stress is currently suggested to play as a pathogenesis in the development of diabetes mellitus. The present study was designed to evaluate the effect of Casearia esculenta root extract on oxidative stress-related parameters in streptozotocin (STZ) -induced diabetic rats. Antidiabetic treatment with C. esculenta root extract (45 days) significantly (p < .05) decreased thiobarbituric acid reactive substances (TBARS) and remarkably improved tissue antioxidants status such as glutathione (GSH), ascorbic acid (vitamin C) and alpha-tocopherol (vitamin E) in liver and kidney of STZ-diabetic rats. In diabetics rats, the activities of enzymatic antioxidants such as superoxide dismutase (SOD, EC 1.11.1.1) catalase (CAT, EC 1.11.1.6) were decreased significantly while the activity of glutathione peroxidase (GPx, EC 1.11.1.9) decreased in the liver and increased in the kidney. The treatment of diabetic rats with C. esculenta root extract over a 45-day period returned these levels close to normal. These results suggest that C. esculenta root extracts exhibit antiperoxidative as well as antioxidant effects in STZ-induced diabetic rats.  相似文献   

18.
In the present study, oxidative stress in diabetic model and the effect of garlic oil or melatonin treatment were examined. Streptozotocin (60 mg/kg body weight, i.p.)-induced diabetic rats, showed a significant increase of plasma glucose, total lipids, triglyceride, cholesterol, lipid peroxides, nitric oxide and uric acid. Concomitantly, significant decreases in the levels of antioxidants ceruloplasmin, albumin and total thiols were found in the plasma of diabetic rats. Lipid peroxide levels were significantly increased in erythrocyte lysate and in homogenates of liver and kidney, while superoxide dismutase (SOD) activities were decreased in tissue homogenates of liver and kidney. Treatment of diabetic rats with garlic oil (10 mg/kg i.p.) or melatonin (200 microg/kg i.p.) for 15 days significantly increased plasma levels of total thiol, ceruloplasmin activities, albumin. Lipid peroxides, uric acid, blood glucose, total lipid, triglyceride and cholesterol were decreased significantly after treatment with garlic oil or melatonin. Nitric oxide levels were decreased significantly in rats treated with melatonin only. In erythrocytes lysate, glutathione S-transferase (GST) activities were increased significantly in rats treated with garlic oil or melatonin, while lipid peroxides decreased significantly and total thiol increased significantly in melatonin or garlic oil treatment, respectively. In liver homogenates of rats treated with garlic or melatonin, lipid peroxides were decreased significantly, and GST activities increased significantly, while SOD activities were increased significantly in liver and kidney after garlic or melatonin treatment. The results suggest that garlic oil or melatonin may effectively normalize the impaired antioxidants status in streptozotocin induced-diabetes. The effects of these antioxidants of both agents may be useful in delaying the complicated effects of diabetes as retinopathy, nephropathy and neuropathy due to imbalance between free radicals and antioxidant systems. Moreover, melatonin may be more powerful free radical scavenger than garlic oil.  相似文献   

19.
3, 5-Diiodothyronine (T2), a natural metabolite of triiodothyronine (T3) from deiodination pathway, can mimic biologic effects of T3 without inducing thyrotoxic effects. Recent studies revealed T3 acted as a protective factor against diabetic nephropathy (DN). Nevertheless, little is known about the effect of T2 on DN. This study was designed to investigate whether and how T2 affects experimental models of DN in vivo and in vitro. Administration of T2 was found to prevent significant decrease in SIRT1 protein expression and activity as well as increases in blood glucose, urine albumin excretion, matrix expansion, transforming growth factor-β1 expression, fibronectin and type IV collagen deposition in the diabetic kidney. Concordantly, similar effects of T2 were exhibited in the cultured rat mesangial cells (RMC) exposed to high glucose and that could be abolished by a known SIRT1 inhibitor, sirtinol. Moreover, enhanced NF-κB acetylation and JNK phosphorylation present in both diabetic rats and high glucose-treated RMC were distinctly dampened by T2. Collectively, these results suggested that T2 was a protective agent against renal damage in diabetic nephropathy, whose action involved regulation of SIRT1.  相似文献   

20.
Inadequate utilization of glucose in diabetes mellitus favors diverse metabolic alterations that play a relevant role in the physio-pathology of chronic complications of this disease. Streptozotocin-induced diabetic rats were treated daily with glycine (130 mM as optimal concentration) or taurine (40 mM) for six months. Groups of diabetic rats without treatment were used as controls. Glucose, total cholesterol, triacylglycerol, and glycated hemoglobin were determined periodically after inducing diabetes. Rats were killed after 6 months of treatment and histological analyses were performed. Diabetic groups that received glycine or taurine showed significant lower concentrations of glucose, total cholesterol, triacylglycerol, and glycated hemoglobin than diabetic control rats (P<0.05) after 6 months treatment. Histological analyses of diabetic rats showed pancreatic atrophy and necrosis, vacuolization, decrease of beta cells, and diffuse glomerulosclerosis. Diabetic rats treated with glycine or taurine showed less enlargement of the glomerular basal membrane than control diabetic rats. Our results suggest that glycine and taurine reduced the alterations induced by hyperglycemia in streptozotocin-induced diabetic rats probably due to inhibition of oxidative processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号