首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The cell surface receptor for ecotropic host-range (infection limited to mice or rats) murine leukemia viruses (MuLVs) is the widely expressed system y+ transporter for cationic amino acids (CAT-1). Like other retroviruses, ecotropic MuLV infection eliminates virus-binding sites from cell surfaces and results in complete interference to superinfection. Surprisingly, infection causes only partial (ca 40 to 60%) loss of mouse CAT-1 transporter activity. The NIH/Swiss mouse CAT-1 (mCAT-1) contains 622 amino acids with 14 hydrophobic potential membrane-spanning sequences, and it is known that the third extracellular loop from the amino terminus is required for virus binding. Although loop 3 is hypervariable in different species and mouse strains, consistent with its proposed role in virus-host coevolution, loop 3 sequences of both susceptible and resistant species contain consensus sites for N-linked glycosylation. Both of the consensus sites in loop 3 of mCAT-1 are known to be glycosylated and to contain oligosaccharides with diverse sizes (J. W. Kim and J. M. Cunningham, J. Biol. Chem. 268:16316-16320, 1993). We confirmed by several lines of evidence that N-linked glycosylation occludes a potentially functional virus-binding site in the CAT-1 protein of hamsters, thus contributing to resistance of that species. To study the role of receptor glycosylation in animals susceptible to infection, we eliminated loop 3 glycosylation sites by mutagenesis of an mCAT-1 cDNA clone, and we expressed wild-type and mutant receptors in mink fibroblasts and Xenopus oocytes. These receptors had indistinguishable transport properties, as determined by kinetic and voltage-jump electrophysiological studies of arginine uptake in oocytes and by analyses Of L-[3H]arginine uptake in mink cells. Bindings of ecotropic envelope glycoprotein gp7O to the accessible receptor sites on surfaces of mink cells expressing wild-type or mutant mCAT-1 were not significantly different in kinetics or in equilibrium affinities (i.e., K(D) approximately 3.7 X 10(-10) to 7.5 X 10(-10) M). However, when values were normalized to the same levels of mCAT-1 transporter expression, cells with wild-type glycosylated mCAT-1 had only approximately 50% as many sites for gp70 binding as cells with unglycosylated mCAT-1. Although infection with ecotropic MuLV had no effect on activity of the mink CAT-1 transporter that does not bind virus, it caused partial down-modulation of wild-type mCAT-1 and complete down-modulation of unglycosylated mutant mCAT-1. These results suggest that N-linked glycosylation causes wild-type mCAT-1 heterogeneity and that a significant proportion is inaccessible to virus. In part because only the interactive fraction of mCAT-1 can be down-modulated, infected murine cells conserve an amino acid transport capability that supports their viability.  相似文献   

2.
Murine type C ecotropic retrovirus infection is initiated by virus envelope binding to a membrane receptor expressed on mouse cells. We have identified a cDNA clone that may encode for this receptor through a strategy combining gene transfer of mouse NIH 3T3 DNA into nonpermissive human EJ cells, selection of EJ clones that have acquired susceptibility to infection by retrovirus vectors containing drug resistance genes, and identification of the putative receptor cDNA clone through linkage to a mouse repetitive DNA sequence. Human EJ cells that express the cDNA acquire a million-fold increase in MuLV infectivity. The predicted 622 amino acid sequence of the putative receptor protein is extremely hydrophobic; 14 potential membrane-spanning domains have been identified. A computer-based search of sequence data banks did not identify a protein with significant similarity to the putative receptor. We conclude that a novel membrane protein determines susceptibility to ecotropic MuLV infection by binding and/or fusion with the virus envelope.  相似文献   

3.
Cotton rats (Sigmodon hispidus) replicate measles virus (MV) after intranasal infection in the respiratory tract and lymphoid tissue. We have cloned the cotton rat signaling lymphocytic activation molecule (CD150, SLAM) in order to investigate its role as a potential receptor for MV. Cotton rat CD150 displays 58% and 78% amino acid homology with human and mouse CD150, respectively. By staining with a newly generated cotton rat CD150 specific monoclonal antibody expression of CD150 was confirmed in cotton rat lymphoid cells and in tissues with a pattern of expression similar to mouse and humans. Previously, binding of MV hemagglutinin has been shown to be dependent on amino acids 60, 61 and 63 in the V region of CD150. The human molecule contains isoleucine, histidine and valine at these positions and binds to MV-H whereas the mouse molecule contains valine, arginine and leucine and does not function as a receptor for MV. In the cotton rat molecule, amino acids 61 and 63 are identical with the mouse molecule and amino acid 60 with the human molecule. After transfection with cotton rat CD150 HEK 293 T cells became susceptible to infection with single cycle VSV pseudotype virus expressing wild type MV glycoproteins and with a MV wildtype virus. After infection, cells expressing cotton rat CD150 replicated virus to lower levels than cells expressing the human molecule and formed smaller plaques. These data might explain why the cotton rat is a semipermissive model for measles virus infection.  相似文献   

4.
Human coronavirus HCoV-229E uses human aminopeptidase N (hAPN) as its receptor (C. L. Yeager et al., Nature 357:420-422, 1992). To identify the receptor-binding domain of the viral spike glycoprotein (S), we expressed soluble truncated histidine-tagged S glycoproteins by using baculovirus expression vectors. Truncated S proteins purified by nickel affinity chromatography were shown to be glycosylated and to react with polyclonal anti-HCoV-229E antibodies and monoclonal antibodies to the viral S protein. A truncated protein (S(547)) that contains the N-terminal 547 amino acids bound to 3T3 mouse cells that express hAPN but not to mouse 3T3 cells transfected with empty vector. Binding of S(547) to hAPN was blocked by an anti-hAPN monoclonal antibody that inhibits binding of virus to hAPN and blocks virus infection of human cells and was also blocked by polyclonal anti-HCoV-229E antibody. S proteins that contain the N-terminal 268 or 417 amino acids did not bind to hAPN-3T3 cells. Antibody to the region from amino acid 417 to the C terminus of S blocked binding of S(547) to hAPN-3T3 cells. Thus, the data suggest that the domain of the spike protein between amino acids 417 and 547 is required for the binding of HCoV-229E to its hAPN receptor.  相似文献   

5.
Retrovirus infection is initiated by binding of the surface (SU) portion of the viral envelope glycoprotein (Env) to specific receptors on cells. This binding triggers conformational changes in the transmembrane portion of Env, leading to membrane fusion and cell entry, and is thus a major determinant of retrovirus tissue and species tropism. The M813 murine leukemia virus (MuLV) is a highly fusogenic gammaretrovirus, isolated from Mus cervicolor, whose host range is limited to mouse cells. To delineate the molecular mechanisms of its restricted host range and its high fusogenic potential, we initiated studies to characterize the cell surface protein that mediates M813 infection. Screening of the T31 mouse-hamster radiation hybrid panel for M813 infectivity localized the receptor gene to the distal end of mouse chromosome 16. Expression of one of the likely candidate genes (slc5a3) within this region in human cells conferred susceptibility to both M813 infection and M813-induced fusogenicity. slc5a3 encodes sodium myo-inositol transporter 1 (SMIT1), thus adding another sodium-dependent transporter to the growing list of proteins used by MuLVs for cell entry. Characterization of SMIT1 orthologues in different species identified several amino acid variations within two extracellular loops that may restrict susceptibility to M813 infection.  相似文献   

6.
The entry of ecotropic murine leukemia virus (MLV) into cells requires the interaction of the envelope protein (Env) with its receptor, mouse cationic amino acid transporter 1 (mATRC1). An aspartic acid-to-lysine change at position 84 (D84K) of ecotropic Moloney MLV Env abolishes virus binding and infection. We recently identified lysine 234 (rK234) in mATRC1 as a residue that influences virus binding and infection. Here we show that D84K virus infection increased 3,000-fold on cells expressing receptor with an rK234A change and 100,000-fold on cells expressing an rK234D change. The stronger complementation of D84K virus infection by rK234D than by the rK234A receptor suggests that although the major reason for loss of infection of D84K and D84R virus is due to steric hindrance and charge repulsion, the loss of an interaction of D84 with receptor appears to contribute as well. Taken together, these results indicate that D84 is very close to rK234 of mATRC1 in the bound complex and there is likely an interaction between them. The definitive localization of the receptor binding site on SU should facilitate the design of chimeric envelope proteins that target infection to new receptors by replacing the receptor binding site with an exogenous ligand sequence.  相似文献   

7.
Glutamate metabolism in HIV-infected macrophages: implications for the CNS   总被引:2,自引:0,他引:2  
Central nervous system disorders are still a common complication of human immunodeficiency virus (HIV) infection and can lead to dementia and death. They are mostly the consequences of an inflammatory macrophagic activation and relate to glutamate-mediated excitotoxicity. However, recent studies also suggest neuroprotective aspects of macrophage activation through the expression of glutamate transporters and glutamine synthetase. We thus aimed to study whether HIV infection or activation of macrophages could modulate glutamate metabolism in these cells. We assessed the effect of HIV infection on glutamate transporter expression as well as on glutamate uptake by macrophages and showed that glutamate transport was partially decreased in the course of virus replication, whereas excitatory amino acid transporter-2 (EAAT-2) gene expression was dramatically increased. The consequences of HIV infection on glutamine synthetase were also measured and for the first time we show the functional expression of this key enzyme in macrophages. This expression was repressed during virus production. We then quantified EAAT-1 and EAAT-2 gene expression as well as glutamate uptake in differentially activated macrophages and show that the effects of HIV are not directly related to pro- or anti-inflammatory mediators. Finally, this study shows that glutamate transport by macrophages is less affected than what has been described in astrocytes. Macrophages may thus play a role in neuroprotection against glutamate in the infected brain, through their expression of both EAATs and glutamine synthetase. Because glutamate metabolism by activated macrophages is sensitive to both HIV infection and inflammation, it may thus be of potential interest as a therapeutic target in HIV encephalitis. excitatory amino acid transporter; cystine-glutamate antiporter; glutathione; inflammation; oxidative stress; glutamine synthetase  相似文献   

8.
Smith VP  Alcami A 《Journal of virology》2000,74(18):8460-8471
The production of secreted proteins that bind cytokines and block their activity has been well characterized as an immune evasion strategy of the orthopoxviruses vaccinia virus (VV) and cowpox virus (CPV). However, very limited information is available on the expression of similar cytokine inhibitors by ectromelia virus (EV), a virulent natural mouse pathogen that causes mousepox. We have characterized the expression and binding properties of three major secreted immunomodulatory activities in 12 EV strains and isolates. Eleven of the 12 EVs expressed a soluble, secreted 35-kDa viral chemokine binding protein with properties similar to those of homologous proteins from VV and CPV. All of the EVs expressed soluble, secreted receptors that bound to mouse, human, and rat tumor necrosis factor alpha. We also detected the expression of a soluble, secreted interleukin-1beta (IL-1beta) receptor (vIL-1betaR) by all of the EVs. EV differed from VV and CPV in that binding of human (125)I-IL-1beta to the EV vIL-1betaR could not be detected. Nevertheless, the EV vIL-1betaR prevented the interaction of human and mouse IL-1beta with cellular receptors. There are significant differences in amino acid sequence between the EV vIL-1betaR and its VV and CPV homologs which may account for the results of the binding studies. The conservation of these activities in EV suggests evolutionary pressure to maintain them in a natural poxvirus infection. Mousepox represents a useful model for the study of poxvirus pathogenesis and immune evasion. These findings will facilitate future study of the role of EV immunomodulatory factors in the pathogenesis of mousepox.  相似文献   

9.
Harman A  Browne H  Minson T 《Journal of virology》2002,76(21):10708-10716
Herpes simplex virus glycoprotein H (gH) is one of the four virion envelope proteins which are required for virus entry and for cell-cell fusion in a transient system. In this report, the role of the transmembrane and cytoplasmic tail domains of gH in membrane fusion was investigated by generating chimeric constructs in which these regions were replaced with analogous domains from other molecules and by introducing amino acid substitutions within the membrane-spanning sequence. gH molecules which lack the authentic transmembrane domain or cytoplasmic tail were unable to mediate cell-cell fusion when coexpressed with gB, gD, and gL and were unable to rescue the infectivity of a gH-null virus as efficiently as a wild-type gH molecule. Many amino acid substitutions of specific amino acid residues within the transmembrane domain also affected cell-cell fusion, in particular, those introduced at a conserved glycine residue. Some gH mutants that were impaired in cell-cell fusion were nevertheless able to rescue the infectivity of a gH-negative virus, but these pseudotyped virions entered cells more slowly than wild-type virions. These results indicate that the fusion event mediated by the coexpression of gHL, gB, and gD in cells shares common features with the fusion of the virus envelope with the plasma membrane, they point to a likely role for the membrane-spanning and cytoplasmic tail domains of gH in both processes, and they suggest that a conserved glycine residue in the membrane-spanning sequence is crucial for efficient fusion.  相似文献   

10.
CATs,a family of three distinct mammalian cationic amino acid transporters   总被引:2,自引:0,他引:2  
E. I. Closs 《Amino acids》1996,11(2):193-208
Summary Three related mammalian carrier proteins that mediate the transport of cationic amino acids through the plasma membrane have been identified in murine and human cells (CAT for cationic amino acid transporter). Models of the CAT proteins in the membrane suggest they have 12 or 14 transmembrane domains connected by short hydrophilic loops and intracellular N- and C-termini. The transport activity of the CAT proteins is sensitive to trans-stimulation and independent of the presence of sodium ions. These features agree with the behaviour of carrier proteins mediating facilitated diffusion. The three CAT proteins, CAT-1, CAT-2A and CAT-2(B) are encoded by two different genes (CAT-1 and CAT-2). CAT-1 and CAT-2(B) exhibit transport properties consistent with system y+, the principal mechanism for cellular uptake of cationic amino acids. In contrast, CAT-2A has tenfold lower substrate affinity, greater apparent maximal velocity and it is much less sensitive to trans-stimulation. In addition to structural and functional aspects, this review discusses the role of the CAT proteins for supplying substrate to NO synthases and the property of the rodent CAT-1 proteins to function as virus receptors.Abbreviations CAT cationic amino acid transporter - m mouse - h human - r rat - Tea T cell early activation protein - CAA cationic amino acids - TM transmembrane spanning domain - rBAT related to b0,+ amino acid transporter - 4F2hc 4F2 heavy chain cell surface antigen - MuLV murine leukemia viruses - Km Michaelis Menten constant  相似文献   

11.
The role of glycoprotein membrane-spanning domains in the process of membrane fusion is poorly understood. It has been demonstrated that replacing all or part of the membrane-spanning domain of a viral fusion protein with sequences that encode signals for glycosylphosphatidylinositol linkage attachment abrogates membrane fusion activity. It has been suggested, however, that the actual amino acid sequence of the membrane-spanning domain is not critical for the activity of viral fusion proteins. We have examined the function of Moloney murine leukemia virus envelope proteins with substitutions in the membrane-spanning domain. Envelope proteins bearing substitutions for proline 617 are processed and incorporated into virus particles normally and bind to the viral receptor. However, they possess greatly reduced or undetectable capacities for the promotion of membrane fusion and infectious virus particle formation. Our results imply a direct role for the residues in the membrane-spanning domain of the murine leukemia virus envelope protein in membrane fusion and its regulation. They also support the thesis that membrane-spanning domains possess a sequence-dependent function in other protein-mediated membrane fusion events.  相似文献   

12.
Complementary DNAs encoding the mouse GLUT3/brain facilitative glucose transporter have been isolated and sequenced. The predicted amino acid sequence indicates that mouse GLUT3 is composed of 493 amino acids and has 83 and 89% identity and similarity, respectively, to the sequence of human GLUT3. In contrast to human GLUT3 mRNA, which can be readily detected by RNA blotting in all human tissues that have been examined, mouse GLUT3 mRNA was only present at significant levels in brain. In situ hybridization showed differential expression of GLUT3 mRNA in several regions of adult mouse brain. Specific expression was observed in the hippocampus, with GLUT3 mRNA levels being higher in areas CA1 to CA3 than in the dentate gyrus. It was also detected in the Purkinje cell layer of the cerebellum and in the cerebral cortex, with higher expression in the piriform cortex than in other regions of the cortex. Antisera to mouse GLUT3 immunoblotted a series of proteins of 45-50 kDa in mouse brain plasma membranes. These results are consistent with GLUT3 being a neuronal glucose transporter.  相似文献   

13.
Normal lung function requires transepithelial clearance of luminal proteins; however, little is known about the molecular mechanisms of protein transport. Protein degradation followed by transport of peptides and amino acids may play an important role in this process. We previously cloned and functionally characterized the neutral and cationic amino acid transporter ATB(0+) and showed expression in the lung by mRNA analysis. In this study, the tissue distribution, subcellular localization, and function of the transporter in native tissue were investigated. Western blots showed expression of the ATB(0+) protein in mouse lung, stomach, colon, testis, blastocysts, and human lung. Immunohistochemistry revealed that ATB(0+) is predominantly expressed on the apical membrane of ciliated epithelial cells throughout mouse airways from trachea to bronchioles and in alveolar type I cells. Electrical measurements from mouse trachea preparations showed Na(+)- and Cl(-)-dependent, amino acid-induced short-circuit current consistent with the properties of ATB(0+). We hypothesize that, by removing amino acids from the airway lumen, the transporter contributes to protein clearance and, by maintaining a low nutrient environment, plays a role in lung defense.  相似文献   

14.
Blondeau JP 《Gene》2002,286(2):241-248
The L-type (LAT) family of amino acid transporters is composed of exchangers for neutral, cationic, and anionic amino acids. They form functional heterodimers with membrane glycoproteins, rBAT or 4F2hc/CD98, to which they are linked by a disulphide bond. We report the molecular cloning and tissue expression of new mouse and human homologues of the LAT family, termed mXAT1, mXAT2 and hXAT2. The latter two proteins may correspond to ortholog genes in mouse and human. The hXAT2 gene is located on chromosome 8q21.3. The cloned X amino acid transporter (XAT) cDNAs are predicted to encode proteins of about 50 kDa. From a phylogenetic point of view, the three XAT proteins cluster together, but sequence comparison and secondary structure prediction show that they are also related to the members of the LAT family. Like these transporters, the XAT proteins show 12 transmembrane domains and a conserved cysteine residue, located in the second extracellular loop. This conserved cysteine is involved in the disulphide bond formed between the known members of the LAT family and 4F2hc or rBAT. The mXAT1 and hXAT2 mRNAs are expressed in the kidney but they are not detectable in a variety of other tissues. The corresponding proteins were efficiently translated following transfection of their cDNAs in Chinese hamster ovary (CHO) cells. However, cDNA transfection in CHO cells did not induce amino acid uptake, even when cotransfected with vectors expressing 4F2hc or rBAT. This could be related to the fact that mXAT1 and hXAT2 did not form detectable disulphide-linked heterodimers with 4F2hc or rBAT when they were co-expressed in CHO cells. Identification of other putative partner(s) of these LAT family-related transporters may be necessary to understand their role in renal physiology.  相似文献   

15.
Martinez WM  Spear PG 《Journal of virology》2001,75(22):11185-11195
One step in the process of herpes simplex virus (HSV) entry into cells is the binding of viral glycoprotein D (gD) to a cellular receptor. Human nectin-2 (also known as HveB and Prr2), a member of the immunoglobulin (Ig) superfamily, serves as a gD receptor for the entry of HSV-2, variant forms of HSV-1 that have amino acid substitutions at position 25 or 27 of gD (for example, HSV-1/Rid), and porcine pseudorabies virus (PRV). The gD binding region of nectin-2 is believed to be localized to the N-terminal variable-like (V) Ig domain. In order to identify specific amino acid sequences in nectin-2 that are important for HSV entry activity, chimeric molecules were constructed by exchange of sequences between human nectin-2 and its mouse homolog, mouse nectin-2, which mediates entry of PRV but not HSV-1 or HSV-2. The nectin-2 chimeric molecules were expressed in Chinese hamster ovary cells, which normally lack a gD receptor, and tested for cell surface expression and viral entry activity. As expected, chimeric molecules containing the V domain of human nectin-2 exhibited HSV entry activity. Replacement of either of two small regions in the V domain of mouse nectin-2 with amino acids from the equivalent positions in human nectin-2 (amino acids 75 to 81 or 89) transferred HSV-1/Rid entry activity to mouse nectin-2. The resulting chimeras also exhibited enhanced HSV-2 entry activity and gained the ability to mediate wild-type HSV-1 entry. Replacement of amino acid 89 of human nectin-2 with the corresponding mouse amino acid (M89F) eliminated HSV entry activity. These results identify two different amino acid sequences, predicted to lie adjacent to the C' and C" beta-strands of the V domain, that are critical for HSV entry activity. This region is homologous to the human immunodeficiency virus binding region of CD4 and to the poliovirus binding region of CD155.  相似文献   

16.
We previously identified human scavenger receptor class B, member 2 (SCARB2), as a cellular receptor for enterovirus 71 (EV71). Expression of human SCARB2 (hSCARB2) permitted mouse L929 cells to efficiently bind to virions and to produce both viral proteins and progeny viruses upon EV71 infection. Mouse Scarb2 (mScarb2) exhibited 85.8% amino acid identity and 99.9% similarity to hSCARB2. The expression of mScarb2 in L929 cells conferred partial susceptibility. Very few virions bound to mScarb2-expressing cells. The viral titer in L929 cells expressing mScarb2 was approximately 40- to 100-fold lower than that in L929 cells expressing hSCARB2. Using hSCARB2-mScarb2 chimeric mutants, we attempted to map the region that was important for efficient EV71 infection. L929 cells expressing chimeras that carried amino acids 142 to 204 from the human sequence were susceptible to EV71, while chimeras that carried the mouse sequence in this region were not. Moreover, this region was also critical for binding to virions. The determination of this region in hSCARB2 that is important for EV71 binding and infection greatly contributes to the understanding of virus-receptor interactions. Further studies will clarify the early steps of EV71 infection.  相似文献   

17.
The charged amino acids near or within the membrane-spanning region of the human immunodeficiency virus type 1 gp41 envelope glycoprotein were altered. Two mutants were defective for syncytium formation and virus replication even though levels of envelope glycoproteins on the cell or virion surface and CD4 binding were comparable to those of the wild-type proteins. Thus, in addition to anchoring the envelope glycoproteins, sequences proximal to the membrane-spanning gp41 region are important for the membrane fusion process.  相似文献   

18.
As membrane transporter proteins, VGLUT1-3 mediate the uptake of glutamate into synaptic vesicles at presynaptic nerve terminals of excitatory neural cells. This function is crucial for exocytosis and the role of glutamate as the major excitatory neurotransmitter in the central nervous system. The three transporters, sharing 76% amino acid sequence identity in humans, are highly homologous but differ in regional expression in the brain. Although little is known regarding their three-dimensional structures, hydropathy analysis on these proteins predicts 12 transmembrane segments connected by loops, a topology similar to other members in the major facilitator superfamily, where VGLUT1-3 have been phylogenetically classified. In this work, we present a three-dimensional model for the human VGLUT1 protein based on its distant bacterial homolog in the same superfamily, the glycerol-3-phosphate transporter from Escherichia coli. This structural model, stable during molecular dynamics simulations in phospholipid bilayers solvated by water, reveals amino acid residues that face its pore and are likely to affect substrate translocation. Docking of VGLUT1 substrates to this pore localizes two different binding sites, to which inhibitors also bind with an overall trend in binding affinity that is in agreement with previously published experimental data.  相似文献   

19.
Astrocytes become activated in response to many CNS pathologies. The process of astrocyte activation remains rather enigmatic and results in so-called reactive gliosis, a reaction with specific structural and functional characteristics. Astrocytes play a vital role in regulating aspects of inflammation and in the homeostatic maintenance of the CNS. However, the responses of different human astroglial cell-lines in viral encephalitis mediated inflammation are not well documented. We have shown that Japanese encephalitis virus (JEV) infection causes morphological and functional changes in astrocytic cell-lines. We have demonstrated that besides reactive oxygen species (ROS) JEV infection differentially regulated the induction pattern of IL-6, IL-1 beta and IL-8. IP-10, MCP-1, MIG and RANTES secretions in different astroglial cell-lines. The expression of different proteins such as astrocyte-specific glial fibrillary acidic protein (GFAP), the glutamate aspartate transporter/essential amino acid transporter-1 (GLAST/EAAT-1), glutamate transporter-1/essential amino acid transporter-2 (GLT-1/EAAT-2), Ceruloplasmin and Thioredoxin (TRX) expression level also differ in different human astrocyte cell-lines following infection.  相似文献   

20.
S. S. Tate 《Amino acids》1996,11(2):209-224
Summary Cystinuria, one of the most common genetic disorders, is characterized by excessive excretion of cystine and basic amino acids in urine. The low solubility of cystine results in formation of kidney stones which can eventually lead to renal failure. Three types of cystinurias have been described. All involve defects in a high-affinity transport system for cystine in the brush border membranes of kidney and intestinal epithelial cells. The molecular properties of proteins involved in epithelial cystine transport are incompletely understood. A protein (NBAT, neutral and basic amino acid transporter), initially cloned by us from rat kidney and shown to be localized in the renal and intestinal brush border membranes, has been implicated in this transport, and mutations in human NBAT gene have been found in several cystinurics, making it a prime candidate for a cystinuria gene. However, mutations in NBAT were found only in Type I cystinurics and not in Types II and III suggesting that defects in other, as yet uncharacterized, genes may also be involved. NBAT has an unusual (for an amino acid transporter) membrane topology. We proposed that the protein contains four membrane-spanning domains, a model disputed by other investigators. We subsequently obtained experimental data consistent with a four membrane-spanning domain model. Furthermore, recently we showed that kidney and intestinal NBAT (85kDa) is associated with another brush border membrane protein (about 50kDa) and have proposed that the heterodimer represents the minimal functional unit of the high-affinity cystine transporter in these membranes. These findings raise the tantalizing possibilities that defects in the NBAT-associated protein might account for cystinurias in individuals with normal NBAT gene (such as the Types II and III cystinurics).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号