首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The five EcoRI2 restriction sites in bacteriophage lambda DNA have been mapped at 0.445, 0.543, 0.656, 0.810, and 0.931 fractional lengths from the left end of the DNA molecule. These positions were determined electron-microscopically by single-site cleavage of hydrogen-bonded circular λ DNA molecules and by cleavage of various DNA heteroduplexes between λ DNA and DNA from well defined λ mutants. The DNA lengths of the EcoRI fragments are in agreement with their electrophoretic mobility on agarose gels but are not in agreement with their mobilities on polyacrylamide gels. These positions are different from those previously published by Allet et al. (1973). Partial cleavage of pure λ DNA by addition of small amounts of EcoRI endonuclease does not lead to random cleavage between molecules. Also, the first site cleaved is not randomly distributed among the five sites within a molecule. The site nearest the right end is cleaved first about ten times more frequently than either of the two center sites.  相似文献   

2.
Origin and Direction of Simian Virus 40 Deoxyribonucleic Acid Replication   总被引:63,自引:28,他引:35  
Double-branched, circular, replicating deoxyribonucleic acid (DNA) molecules of simian virus 40 (SV40) have been cleaved by the R(1) restriction endonuclease from Escherichia coli. This enzyme introduces one double-strand break in SV40 DNA, at a specific site. The site of cleavage in the replicating molecules was used in this study to position the origin and the two branch points. Radioactively labeled molecules fractionated according to their extent of replication were evaluated after cleavage by sedimentation analysis and electron microscopy. The results demonstrate that the R(1) cleavage site is 33% of the genome length from the origin of replication and that both branch points are growing points. These data indicate that SV40 DNA replication is bidirectional and confirm other reports which have shown a unique origin of replication.  相似文献   

3.
The EcoP15 restriction endonuclease forms complexes at specific sites on unmodified DNA both in the presence and in the absence of S-adenosyl-l-methionine. ATP acts as an allosteric effector of EcoP15 and induces DNA cleavage followed by release of the enzyme from the DNA. The efficiency of endonucleolytic scission varies from site to site. The nucleotide sequences at sites that are cleaved at a high frequency were compared.  相似文献   

4.
Studies of simian virus 40 DNA. VII. A cleavage map of the SV40 genome   总被引:91,自引:0,他引:91  
A physical map of the Simian virus 40 genome has been constructed on the basis of specific cleavage of Simian virus 40 DNA by bacterial restriction endonucleases. The 11 fragments produced by enzyme from Hemophilus influenzae have been ordered by analysis of partial digest products and by analysis of an overlapping set of fragments produced by enzyme from Hemophilus parainfluenzae. In addition, the single site in SV40 DNA cleaved by the Escherichia coli RI restriction endonuclease has been located. With this site as a reference point, the H. influenzae cleavage sites and the H. parainfluenzae cleavage sites have been localized on the map.  相似文献   

5.
Nucleoprotein complexes containing viral DNA and cellular histones were extracted from nuclei of permissive cells infected with polyoma virus or simian virus 40 (SV40) and examined by electron microscopy. Polyoma and SV40 nucleoprotein complexes are almost identical. They appear as relaxed circular molecules consisting of 20 to 21 globular particles interconnected by thin filaments. Their contour length in 0.02 M salt is 2.7 times shorter than that of viral DNA form I obtained after dissociation of the proteins in 1 M NaCl. The nucleosomes have an average diameter of 12.5 nm. Each nucleosome contains 175 to 205 DNA base pairs condensed fivefold in length. The nucleosomes are regularly spaced on the circular molecule. The internucleosomal filaments are made of naked DNA, and each filament contains about 55 base pairs. The partial sensitivity of the nucleoprotein complex to cleavage by EcoR1 endonuclease suggests that the nucleosomes are not formed at specific sites on the viral genome. Faster sedimenting nucleoprotein complexes containing replicative intermediates were studied. Isopycnic centrifugation in metrizamide gradients in the absence of aldehyde fixation showed that these molecules conserved the same DNA-to-protein ratio as the form I DNA-containing complexes.  相似文献   

6.
EcoRI analysis of bacteriophage P22 DNA packaging.   总被引:20,自引:0,他引:20  
Bacteriophage P22 linear DNA molecules are a set of circularly permuted sequences with ends located in a limited region of the physical map. This mature form of the viral chromosome is cut in headful lengths from a concatemeric precursor during DNA encapsulation. Packaging of P22 DNA begins at a specific site, which we have termed pac, and then proceeds sequentially to cut lengths of DNA slightly longer than one complete set of P22 genes (Tye et al., 1974b). The sites of DNA maturation events have been located on the physical map of EcoRI cleavage sites in P22 DNA. EcoRI digestion products of mature P22 wild-type DNA were compared with EcoRI fragments of two deletion and two insertion mutant DNAs. These mutations decrease or increase the length of the genome, but do not alter the DNA encapsulation mechanism. Thus the position of mature molecular ends relative to EcoRI restriction sites is different in each mutant, and comparison of the digests shows which fragments come from the ends of linear molecules. From the positions of the ends of molecules processed in sequential headfuls, the location of pac and the direction of encapsulation relative to the P22 map were deduced. The pac site lies in EcoRI fragment A, 4.1 × 103 base-pairs from EcoRI cleavage site 1. Sequential packaging of the concatemer is initiated at pac and proceeds in the counterclockwise direction relative to the circular map of P22. One-third of the linears in a population are cut from the concatemer at pac, and most packaging sequences do not extend beyond four headfuls.Fragment D is produced by EcoRI cleavage at a site near the end of a linear chromosome which has been encapsulated starting at pac. The position of the pac site is therefore defined by one end of fragment D. The pac site is not located near genes 12 and 18, the only known site for initiation of P22 DNA replication, but lies among late genes at a position on the physical gene map approximately analogous to the cohesive end site (cos) of bacteriophage λ at which λ DNA is cleaved during encapsulation. Our results suggest that P22 and λ DNA maturation mechanisms have many common properties.  相似文献   

7.
W A Scott  D J Wigmore 《Cell》1978,15(4):1511-1518
Simian virus 40 (SV40) chromatin isolated from infected BSC-1 cell nuclei was incubated with deoxyribonuclease I, staphylococcal nuclease or an endonuclease endogenous to BSC-1 cells under conditions selected to introduce one doublestrand break into the viral DNA. Full-length linear DNA was isolated, and the distribution of sites of initial cleavage by each endonuclease was determined by restriction enzyme mapping. Initial cleavage of SV40 chromatin by deoxyribonuclease I or by endogenous nuclease reduced the recovery of Hind III fragment C by comparison with the other Hind III fragments. Similarly, Hpa I fragment B recovery was reduced by comparison with the other Hpa I fragments. When isolated SV40 DNA rather than SV40 chromatin was the substrate for an initial cut by deoxyribonuclease I or endogenous nuclease, the recovery of all Hind III or Hpa I fragments was approximately that expected for random cleavage. Initial cleavage by staphylococcal nuclease of either SV40 DNA or SV40 chromatin occurred randomly as judged by recovery of Hind III or Hpa I fragments. These results suggest that, in at least a portion of the SV40 chromatin population, a region located in Hind III fragment C and Hpa I fragment B is preferentially cleaved by deoxyribonuclease I or by endogenous nuclease but not by staphylococcal nuclease.Complementary information about this nuclease-sensitive region was provided by the appearance of clusters of new DNA fragments after restriction enzyme digestion of DNA from viral chromatin initially cleaved by endogenous nuclease. From the sizes of new fragments produced by different restriction enzymes, preferential endonucleolytic cleavage of SV40 chromatin has been located between map positions 0.67 and 0.73 on the viral genome.  相似文献   

8.
A procedure for investigating the possibility of small amounts of partial DNA sequence homology between two defined DNA molecules has been developed and used to test for sequence homology between simian virus 40 and polyoma DNAs. This procedure, which does not necessitate the use of separated viral DNA strands, involves the construction of hybrid DNA molecules containing a simian virus 40 DNA molecule covalently joined to a polyoma DNA molecule, using the sequential action of EcoRI restriction endonuclease and Escherichia coli DNA ligase. Denaturation of such hybrid DNA molecules then makes it possible to examine intramolecularly rather than intermolecularly renatured molecules. Visualization of these intramolecularly renatured “snapback” molecules with duplex regions of homology by electron microscopy reveals a 15% region of weak sequence homology. This region is denatured at about 35 °C below the melting temperature of simian virus 40 DNA and therefore corresponds to about 75% homology. This region was mapped on both the simian virus 40 and polyoma genomes by the use of Hemophilus parainfluenzae II restriction endonuclease cleavage of the simian virus 40 DNA prior to EcoRI cleavage and construction of the hybrid molecule. The 15% region of weak homology maps immediately to the left of the EcoRI restriction endonuclease cleavage site in the simian virus 40 genome and halfway around from the EcoRI restriction endonuclease cleavage site in the polyoma genome.  相似文献   

9.
S(1) nuclease, the single-strand specific nuclease from Aspergillus oryzae can cleave both strands of circular covalently closed, superhelical simian virus 40 (SV40) DNA to generate unit length linear duplex molecules with intact single strands. But circular, covalently closed, nonsuperhelical DNA, as well as linear duplex molecules, are relatively resistant to attack by the enzyme. These findings indicate that unpaired or weakly hydrogen-bonded regions, sensitive to the single strand-specific nuclease, occur or can be induced in superhelical DNA. Nicked, circular SV40 DNA can be cleaved on the opposite strand at or near the nick to yield linear molecules. S(1) nuclease may be a useful reagent for cleaving DNAs at regions containing single-strand nicks. Unlike the restriction endonucleases, S(1) nuclease probably does not cleave SV40 DNA at a specific nucleotide sequence. Rather, the sites of cleavage occur within regions that are readily denaturable in a topologically constrained superhelical molecule. At moderate salt concentrations (75 mM) SV40 DNA is cleaved once, most often within either one of the two following regions: the segments defined as 0.15 to 0.25 and 0.45 to 0.55 SV40 fractional length, clockwise, from the EcoR(I) restriction endonuclease cleavage site (defined as the zero position on the SV40 DNA map). In higher salt (250 mM) cleavage occurs preferentially within the 0.45 to 0.55 segment of the map.  相似文献   

10.
11.
Enzymic digestion of Simian virus 40 (SV40) DNA with Haemophilus aegyptius restriction endonuclease Hae III results in 10 major and eight minor fragments. These were resolved by electrophoresis on graduated polyacrylamide slab gels. All fragments have been characterized with respect to the size relative to the Haemophilus influenzae Rd fragments (Hind). They were ordered on the SV40 DNA map by means of overlap analysis of the double cleavage products derived from sequential digestion of Hind fragments with Hae III endonuclease and Hae fragments with Hind II + III enzyme, as well as by other reciprocal cleavage experiments, including those involving Haemophilus para-influenzae fragments. In this way the 18 Hae III cleavage sites and the 13 Hind sites have been localized on the circular SV40 DNA map.  相似文献   

12.
A 203 base-pair fragment containing the lac operator/promoter region of Escherichia coli was inserted into the EcoRI site of the plasmid vector pKC7. Rates of restriction endonuclease cleavage of the flanking EcoRI sites and of several other restriction sites on the DNA molecule were then compared in the presence and absence of bound RNA polymerase or lac repressor. The rates were identical whether or not protein had been bound, even for sites as close as 40 base-pairs from a protein binding site. No difference was detected using supercoiled, nicked circular, or linear DNA substrates. No apparent change in the rates of methylation of EcoRI sites by EcoRI methylase was produced by binding the regulatory proteins.  相似文献   

13.
SV40 DNA FO I is randomly cleaved by S1 nuclease both at moderate (50 mM) and higher salt concentrations (250 mM NaC1). Full length linear S1 cleavage products of SV40 DNA when digested with various restriction endonucleases revealed fragments that were electrophoretically indistinguishable from the products found after digestion of superhelical SV40 DNA FO I with the corresponding enzyme. Concordingly, when the linear S1 generated duplexes were melted and renatured, circular duplexes were formed in addition to complex larger structures. This indicated that cleavage must have occurred at different sites. The double-strand-cleaving activity present in S1 nuclease preparations requires circular DNA as a substrate, as linear SV40 DNA is not cleaved. With regard to these properties S1 nuclease resembles some of the complex type I restriction nucleases from Escherichia coli which also cleave SV40 DNA only once, and, completely at random.  相似文献   

14.
DNA molecules cut with endonuclease R Eco Ri can be joined at Eco Ri cleavage sites by incubation with polynucleotide ligase. In order to define the optimum conditions for this reaction, linear Simian Virus 40 DNA molecules (SV40(Lri)) produced by endonuclease R Eco Ri cleavage of SV40 form i DNA were joined using polynucleotide ligases specified by bacteriophage T4 and Escherichia coli. We have determined that the concentration of the substrate DNA molecules is the most important factor determining the distribution of covalently joined product molecules into a variety of circular and linear monomeric and oligomeric species.  相似文献   

15.
The sites recognized by the Escherichia coli K12 restriction endonuclease were localized to defined regions on the genomes of phage φXsK1, φXsK2, and G4 by the marker rescue technique. Methyl groups placed on the genome of plasmid pBR322 by the E. coli K12 modification methylase were mapped in HinfI fragments 1 and 3, and HaeIII fragments 1 and 3. A homology of seven nucleotides in the configuration: 5′-A-A-C .. 6N .. G-T-G-C-3′, where 6N represents six unspecified nucleotides, was found among the DNA sequences containing the five EcoK sites of φXsK1, φXsK2, G4, and pBR322. Three lines of evidence indicate that this sequence constitutes the recognition site of the E. coli K12 restriction enzyme. The C in 5′-A-A-C and the T in 5′-G-T-G-C are locations of mutations leading to loss or gain of the site and thus are positions recognized by the enzyme. This sequence does not occur on φXam3cs70, simian virus 40 (SV40), and fd DNAs which do not possess EcoK sites, and occurs only once on φXsK1, φXsK2, and G4 DNAs, and twice on pBR322 DNA. In order to prove that all seven conserved nucleotides are essential for the recognition by the E. coli K12 restriction enzyme, the nucleotide sequences of φX174, G4, SV40, fd, and pBR322 were searched for sequences differing from the sequence 5′-A-A-C .. 6N .. G-TG-C-3′ at only one of the specified positions. It was found that sequences differing at each of the specified positions occur on DNA sequences that do not contain the EcoK sites. Thus, the recognition site of the E. coli K12 restriction enzyme has the same basic structure as that of the EcoB site (Lautenberger et al., 1978). In each case there are two domains, one containing three and the other four specific nucleotides, separated by a sequence of unspecified bases. However, the unspecified sequence in the EcoK site must be precisely six bases instead of the eight found in the EcoB site. Alignment of the EcoK and EcoB sites suggests that four of the seven specified nucleotides are conserved between the sequences recognized by these two allelic restriction and modification systems.  相似文献   

16.
Deleted genomes of simian virus 40 have been constructed by enzymatic excision of specific segments of DNA from the genome of wild-type SV402. For this purpose, a restriction endonuclease from Hemophilus influenzae (endo R · HindIII) was used. This enzyme cleaves SV40 DNA into six fragments, which have cohesive termini. Partial digest products were separated by electrophoresis in agarose gel and subsequently cloned by plaque formation in the presence of complementing temperature-sensitive mutants of SV40. Individual deletion mutants generated in this way were mapped by analysis of DNA fragments produced by endo R · Hind digestion of their deleted genomes, and by heteroduplex mapping. Two types of deletions were found: (1) “excisional” deletions, in which the limits of the deleted segment corresponded to HindIII cleavage sites, and (2) “extended” deletions, in which the deleted segment extended beyond HindIII cleavage sites. Excisionally deleted genomes presumably arose by cyclization of a linear fragment via cohesive termini generated by endo R · HindIII whereas genomes with extended deletions probably were generated by intramolecular recombination near the ends of linear fragments. Of the nine mutants analyzed, two had deletions in the “early” region of the SV40 genome, six had deletions in the “late” region, and one had a deletion that spanned both regions.  相似文献   

17.
A biochemical procedure has been developed for increasing the size of deletion mutations in closed-circular, double-stranded DNA. Specifically, the deletion in a simian virus 40 (SV40) mutant (dl892), a viable deletion mutant lacking about 35 base-pairs at 0.675 to 0.68 SV40 map units, has been enlarged to produce a series of new mutants lacking from 45 to 90 base-pairs. To enlarge the deletion, the following steps were involved: mutant and wild-type SV40 DNAs were cleaved with the EcoRI restriction endonuclease to form full-length linear molecules, and then they were mixed, denatured and annealed to reform duplex structures. The linear heteroduplex DNAs were re-circularized by treatment with DNA ligase. These closed-circular molecules, half of which contain a small deletion loop at 0.675 to 0.68 map units, were treated with S1 endonuclease, which cleaves at the site of the deletion loops to produce linear molecules with ends at 0.675 to 0.68 map units. Mutants containing enlarged deletions were obtained by infecting permissive monkey kidney cells with the linear DNA. The location of the enlarged deletion in each mutant was compared to that of the parental mutant, dl892. One end of the parental deletion (at about 0.675 map units) remained essentially unmoved; the deletions were enlarged almost entirely in the opposite direction. Since these mutants were all selected for viability, 0.675 map units very likely marks the boundary between a region of the genome previously shown to contain non-essential sequences (from 0.675 to about 0.74 map units) and a portion of the genome required for lytic growth.  相似文献   

18.
A preparation of serially passaged simian virus 40 (SV40) DNA, in which at least 66% of the molecules contain covalently linked cellular DNA sequences, was digested to completion with the Hemophilus influenzae restriction endonuclease. Polyacrylamide gel electrophoresis of the digest showed that the majority of the cleavage products migrated as nine classes of fragments, each class defined by a particular molecular weight. These classes of fragments differ in molecular weight from the fragments produced by the action of the same enzyme on plaque-purified virus DNA. Three classes of fragments were present in less than equimolar amounts relative to the original DNA. The remaining six classes of fragments each contain more than one fragment per original DNA molecule. DNA-DNA hybridization analysis (using the filter method) of the isolated cleavage products demonstrated the presence of highly reiterated cell DNA sequences in two of the nine classes of fragments. A third class of fragments hybridized with high efficiency only to serially passaged SV40 DNA; the level of hybridization to plaque-purified virus DNA was low and there was essentially no hybridization with cell DNA immobilized on filters. It is suggested that this class of fragments contains unique host sequences. It was estimated that at least 27% of the sequences in the substituted SV40 DNA molecules studied are host sequences. The majority of these are probably of the nonreiterated type.  相似文献   

19.
The non-defective (heavy) virions from a simian virus 40-like virus (DAR virus) isolated from human brain have been serially passaged at high input multi-plicities in primary monkey kidney cells. The 32P-labeled, progeny DAR-viral genomes have been purified and tested for sensitivity to the RI restriction endouclease from Escherichia coli (Eco RI3 restriction nuclease). The parental DAR-viral genomes share many physical properties with “standard” simian virus 40 DNA and are cleaved once by the Eco RI restriction nuclease. After the fourth serial passage, three populations of genomes could be distinguished: Eco RI resistant, Eco RI sensitive (one cleavage site) and Eco RI “supersensitive” (three, symmetrically-located, cleavage sites). The Eco RI cleavage product of the “supersensitive” form is one-third the physical size (10.4 S) of simian virus 40 DNA and reassociates about three times more rapidly than sheared, denatured simian virus 40 DNA. From the fourth to the eighth serial passages, the genomes containing this specific triplication of viral DNA sequences were selected for and became the predominant viral DNA species.  相似文献   

20.
Double-stranded DNA fragments terminated at their 5′-ends by the singlestranded sequence pA-A-T-T-, generated by digestion of DNA with EcoRI restriction endonuclease, were ligated with Escherichia coli polynucleotide ligase under various conditions of temperature, concentration and time. The linear and circular products of ligation were separated by electrophoresis in agarose gel and quantitated by densitometry. The rate of ligation of (EcoRI-cleaved) simian virus (SV40) DNA at a concentration of 100 μg/ml increased from 0 °C to 5 °C to 10 °C (6-fold increase overall); raising the temperature to 15 °C did not further increase the rate of ligation. At the appropriate DNA concentrations, the predominant products of ligation are either linear concatemers that are integral multimers of the starting DNA fragment, or covalently closed circular structures of the monomeric DNA fragment. Ligating a mixture of two different length DNA fragments gives rise to all of the possible expected recombinant molecules.Linear or circular products of ligation were predicted by consideration of the total concentration of DNA termini, i, and the local concentration of one terminus in the neighborhood of the other on the same DNA molecule, j. The parameter j is a function of the length of a DNA molecule, providing this length is greater than the random coil segment of DNA. Experimentally it was found that circular structures are formed in significant amounts only under conditions when the value of j is several times greater than that of i. When j = i, equal amounts of linear and circular products would be expected, but most of the molecules were ligated into linear concatemers. No circular structure of a DNA fragment whose contour length l (6 × 10−2 μm) is smaller than the random coil segment value b (7·17 × 10−2 μm) was observed, while circular structures of the dimer of the same molecule (12 × 10−2 μm) were detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号