首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Selection of single cells capable of producing target proteins at high rates is crucial for the development of protein manufacturing processes. Here, we present the rapid selection of single cells producing immunoglobulin antibodies at high specific rates by microwell array and microengraving. Chinese hamster ovary (CHO) cells secreting chimeric antibodies were deposited in a microwell array in a manner such that each microwell contained a single cell. Secreted antibodies in the microwells were transferred onto a glass slide by microengraving, followed by interrogation using fluorescence-based immunoassay. Single cells displaying high signal intensities were selected, retrieved, and clonally expanded to assess their specific antibody production rates. Three successive rounds of the process resulted in the selection of single cells showing significantly increased antibody production rates. The present approach can be applied to the selection of single cells for producing other therapeutic proteins in a high-throughput manner.  相似文献   

2.
Development of a reliable platform and workflow to detect and capture a small number of mutation-bearing circulating tumor cells (CTCs) from a blood sample is necessary for the development of noninvasive cancer diagnosis. In this preclinical study, we aimed to develop a capture system for molecular characterization of single CTCs based on high-density dielectrophoretic microwell array technology. Spike-in experiments using lung cancer cell lines were conducted. The microwell array was used to capture spiked cancer cells, and captured single cells were subjected to whole genome amplification followed by sequencing. A high detection rate (70.2%–90.0%) and excellent linear performance (R2 = 0.8189–0.9999) were noted between the observed and expected numbers of tumor cells. The detection rate was markedly higher than that obtained using the CellSearch system in a blinded manner, suggesting the superior sensitivity of our system in detecting EpCAM− tumor cells. Isolation of single captured tumor cells, followed by detection of EGFR mutations, was achieved using Sanger sequencing. Using a microwell array, we established an efficient and convenient platform for the capture and characterization of single CTCs. The results of a proof-of-principle preclinical study indicated that this platform has potential for the molecular characterization of captured CTCs from patients.  相似文献   

3.
Advances in systems biology and bioinformatics have highlighted that no cell population is truly uniform and that stochastic behavior is an inherent property of many biological systems. As a result, bulk measurements can be misleading even when particular care has been taken to isolate a single cell type, and measurements averaged over multiple cell populations in a tissue can be as misleading as the average height at an elementary school. There is a growing need for experimental techniques that can provide a combination of single cell resolution, large cell populations, and the ability to track cells over multiple time points. In this article, a microwell array cytometry platform was developed to meet this need and investigate the heterogeneity and stochasticity of cell behavior on a single cell basis. The platform consisted of a microfabricated device with high‐density arrays of cell‐sized microwells and custom software for automated image processing and data analysis. As a model experimental system, we used primary hepatocytes labeled with fluorescent probes sensitive to mitochondrial membrane potential and free radical generation. The cells were exposed to oxidative stress and the responses were dynamically monitored for each cell. The resulting data was then analyzed using bioinformatics techniques such as hierarchical and k‐means clustering to visualize the data and identify interesting features. The results showed that clustering of the dynamic data not only enhanced comparisons between the treatment groups but also revealed a number of distinct response patterns within each treatment group. Heatmaps with hierarchical clustering also provided a data‐rich complement to survival curves in a dose response experiment. The microwell array cytometry platform was shown to be powerful, easy to use, and able to provide a detailed picture of the heterogeneity present in cell responses to oxidative stress. We believe that our microwell array cytometry platform will have general utility for a wide range of questions related to cell population heterogeneity, biological stochasticity, and cell behavior under stress conditions. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

4.
Microwell array cytometry is a novel high-throughput experimental technique that makes it possible to correlate pre-stress cell phenotypes and post-stress outcomes with single cell resolution. Because the cells are seeded in a high density grid of cell-sized microwells, thousands of individual cells can be tracked and imaged through manipulations as extreme as freezing or drying. Unlike flow cytometry, measurements can be made at multiple time points for the same set of cells. Unlike conventional image cytometry, image analysis is greatly simplified by arranging the cells in a spatially defined pattern and physically separating them from one another. To demonstrate the utility of microwell array cytometry in the field of biopreservation, we have used it to investigate the role of mitochondrial membrane potential in the cryopreservation of primary hepatocytes.Even with optimized cryopreservation protocols, the stress of freezing almost always leads to dysfunction or death in part of the cell population. To a large extent, cell fate is dominated by the stochastic nature of ice crystal nucleation, membrane rupture, and other biophysical processes, but natural variation in the initial cell population almost certainly plays an important and under-studied role. Understanding why some cells in a population are more likely to survive preservation will be invaluable for the development of new approaches to improve preservation yields.For this paper, primary hepatocytes were seeded in microwell array devices, imaged using the mitochondrial dyes Rh123 or JC-1, cryopreserved for up to a week, rapidly thawed, and checked for viability after a short recovery period. Cells with a high mitochondrial membrane potential before freezing were significantly less likely to survive the freezing process, though the difference in short term viability was fairly small. The results demonstrate that intrinsic cell factors do play an important role in cryopreservation survival, even in the short term where extrinsic biophysical factors would be expected to dominate. We believe that microwell array cytometry will be an important tool for a wide range of studies in biopreservation and stress biology.  相似文献   

5.
Here we report a new method for isolating antigen-specific antibody-secreting cells (ASCs) using a microwell array chip, which offers a rapid, efficient and high-throughput (up to 234,000 individual cells) system for the detection and retrieval of cells that secrete antibodies of interest on a single-cell basis. We arrayed a large population of lymphoid cells containing ASCs from human peripheral blood on microwell array chips and detected spots with secreted antibodies. This protocol can be completed in less than 7 h, including 3 h of cell culture. The method presented here not only has high sensitivity and specificity comparable with enzyme-linked immunospot (ELISPOT) but it also overcomes the limitations of ELISPOT in recovering ASCs that can be used to produce antigen-specific human monoclonal antibodies. This method can also be used to detect cells secreting molecules other than antibodies, such as cytokines, and it provides a tool for cell analysis and clinical diagnosis.  相似文献   

6.
A live cell array biosensor was fabricated by immobilizing bacterial cells on the face of an optical imaging fiber containing a high-density array of microwells. Each microwell accommodates a single bacterium that was genetically engineered to respond to a specific analyte. A genetically modified Escherichia coli strain, containing the lacZ reporter gene fused to the heavy metal-responsive gene promoter zntA, was used to fabricate a mercury biosensor. A plasmid carrying the gene coding for the enhanced cyan fluorescent protein (ECFP) was also introduced into this sensing strain to identify the cell locations in the array. Single cell lacZ expression was measured when the array was exposed to mercury and a response to 100nM Hg(2+) could be detected after a 1-h incubation time. The optical imaging fiber-based single bacterial cell array is a flexible and sensitive biosensor platform that can be used to monitor the expression of different reporter genes and accommodate a variety of sensing strains.  相似文献   

7.
Live cell‐based sensors potentially provide functional information about the cytotoxic effect of reagents on various signaling cascades. Cells transfected with a reporter vector derived from a cytotoxic response promoter can be used as intelligent cytotoxicity sensors (i.e., sensor cells). We have combined sensor cells and a microfluidic cell culture system that can achieve several laminar flows, resulting in a reliable high‐throughput cytotoxicity detection system. These sensor cells can also be applied to single cell arrays. However, it is difficult to detect a cellular response in a single cell array, due to the heterogeneous response of sensor cells. The objective of this study was cell homogenization with cell cycle synchronization to enhance the response of cell‐based biosensors. Our previously established stable sensor cells were brought into cell cycle synchronization under serum‐starved conditions and we then investigated the cadmium chloride‐induced cytotoxic response at the single cell level. The GFP positive rate of synchronized cells was approximately twice as high as that of the control cells, suggesting that cell homogenization is an important step when using cell‐based biosensors with microdevices, such as a single cell array. Biotechnol. Bioeng. 2010;107: 561–565. © 2010 Wiley Periodicals, Inc.  相似文献   

8.
New markers are constantly emerging that identify smaller and smaller subpopulations of immune cells. However, there is a growing awareness that even within very small populations, there is a marked functional heterogeneity and that measurements at the population level only gives an average estimate of the behaviour of that pool of cells. New techniques to analyze single immune cells over time are needed to overcome this limitation. For that purpose, we have designed and evaluated microwell array systems made from two materials, polydimethylsiloxane (PDMS) and silicon, for high-resolution imaging of individual natural killer (NK) cell responses. Both materials were suitable for short-term studies (<4 hours) but only silicon wells allowed long-term studies (several days). Time-lapse imaging of NK cell cytotoxicity in these microwell arrays revealed that roughly 30% of the target cells died much more rapidly than the rest upon NK cell encounter. This unexpected heterogeneity may reflect either separate mechanisms of killing or different killing efficiency by individual NK cells. Furthermore, we show that high-resolution imaging of inhibitory synapse formation, defined by clustering of MHC class I at the interface between NK and target cells, is possible in these microwells. We conclude that live cell imaging of NK-target cell interactions in multi-well microstructures are possible. The technique enables novel types of assays and allow data collection at a level of resolution not previously obtained. Furthermore, due to the large number of wells that can be simultaneously imaged, new statistical information is obtained that will lead to a better understanding of the function and regulation of the immune system at the single cell level.  相似文献   

9.
With recent findings on the role of reprogramming factors on stem cells, in vitro screening assays for studying (de)-differentiation is of great interest. We developed a miniaturized stem cell screening chip that is easily accessible and provides means of rapidly studying thousands of individual stem/progenitor cell samples, using low reagent volumes. For example, screening of 700,000 substances would take less than two days, using this platform combined with a conventional bio-imaging system. The microwell chip has standard slide format and consists of 672 wells in total. Each well holds 500 nl, a volume small enough to drastically decrease reagent costs but large enough to allow utilization of standard laboratory equipment. Results presented here include weeklong culturing and differentiation assays of mouse embryonic stem cells, mouse adult neural stem cells, and human embryonic stem cells. The possibility to either maintain the cells as stem/progenitor cells or to study cell differentiation of stem/progenitor cells over time is demonstrated. Clonality is critical for stem cell research, and was accomplished in the microwell chips by isolation and clonal analysis of single mouse embryonic stem cells using flow cytometric cell-sorting. Protocols for practical handling of the microwell chips are presented, describing a rapid and user-friendly method for the simultaneous study of thousands of stem cell cultures in small microwells. This microwell chip has high potential for a wide range of applications, for example directed differentiation assays and screening of reprogramming factors, opening up considerable opportunities in the stem cell field.  相似文献   

10.
For the functional analysis of ion channel activity, an artificial lipid bilayer suspended over microwells was formed that ruptured giant unilamellar vesicles on a Si substrate. Ca(2+) ion indicators (fluo-4) were confined in the microwells by sealing the microwells with a lipid bilayer. An overhang formed at the microwells prevented the lipid membrane from falling into them and allowed the stable confinement of the fluorescent probes. The transport of Ca(2+) ions through the channels formed by α-hemolysin inserted in a lipid membrane was analyzed by employing the fluorescence intensity change of fluo-4 in the microwells. The microwell volume was very small (1-100 fl), so a highly sensitive monitor could be realized. The detection limit is several tens of ions/s/μm(2), and this is much smaller than the ion current in a standard electrophysiological measurement. Smaller microwells will make it possible to mimic a local ion concentration change in the cells, although the signal to noise ratio must be further improved for the functional analysis of a single channel. We demonstrated that a microwell array with confined fluorescent probes sealed by a lipid bilayer could constitute a basic component of a highly sensitive biosensor array that works with functional membrane proteins. This array will allow us to realize high throughput and parallel testing devices.  相似文献   

11.
The cell kinetic parameters of K-562 leukemia cells were studied using microwell cultures in which growth was initiated from a single cell. Total population growth was studied by direct enumeration, 3H-thymidine labelling, and flow cytometry. Clonogenic cell growth was studied by replating and 3H-thymidine suicide. In 7-day clones of K-562 cells, durations of the total cell cycle, G1, S, G2, and M phases were 20.8 h, 3.5 h, 12.9 h, 3.3 h, and 1.1 h, respectively; the growth fraction was 0.92 and the cell loss factor was 0.084. Study of colony-forming cells by replating indicated that clonogenic cells comprised 40% of total cells. 3H-Thymidine suicide showed that cell-cycle duration for these cells was 22.5 h and that S-phase duration was 11.7 h.  相似文献   

12.
High-density,microsphere-based fiber optic DNA microarrays   总被引:5,自引:0,他引:5  
A high-density fiber optic DNA microarray has been developed consisting of oligonucleotide-functionalized, 3.1-microm-diameter microspheres randomly distributed on the etched face of an imaging fiber bundle. The fiber bundles are comprised of 6000-50000 fused optical fibers and each fiber terminates with an etched well. The microwell array is capable of housing complementary-sized microspheres, each containing thousands of copies of a unique oligonucleotide probe sequence. The array fabrication process results in random microsphere placement. Determining the position of microspheres in the random array requires an optical encoding scheme. This array platform provides many advantages over other array formats. The microsphere-stock suspension concentration added to the etched fiber can be controlled to provide inherent sensor redundancy. Examining identical microspheres has a beneficial effect on the signal-to-noise ratio. As other sequences of interest are discovered, new microsphere sensing elements can be added to existing microsphere pools and new arrays can be fabricated incorporating the new sequences without altering the existing detection capabilities. These microarrays contain the smallest feature sizes (3 microm) of any DNA array, allowing interrogation of extremely small sample volumes. Reducing the feature size results in higher local target molecule concentrations, creating rapid and highly sensitive assays. The microsphere array platform is also flexible in its applications; research has included DNA-protein interaction profiles, microbial strain differentiation, and non-labeled target interrogation with molecular beacons. Fiber optic microsphere-based DNA microarrays have a simple fabrication protocol enabling their expansion into other applications, such as single cell-based assays.  相似文献   

13.
Motivated by the advantages endowed by high-throughput analysis, researchers have succeeded in incorporating multiple reporter cells into a single platform; the technology now allows the simultaneous scrutiny of a large collection of sensor strains. We review current aspects in cell array technology with emphasis on microbial sensor arrays. We consider various techniques for patterning live cells on solid surfaces, describe different array-based applications and devices, and highlight recent efforts for live cell storage. We review mathematical approaches for deciphering the data emanating from bioreporter collections, and discuss the future of single cell arrays. Innovative technologies for cell patterning, preservation and interpretation are continuously being developed; when they all mature, cell arrays may become an efficient analytical tool, in a scope resembling that of DNA microarray biochips.  相似文献   

14.

Background

Various physical parameters, including substrate rigidity, size of adhesive islands and micro-and nano-topographies, have been shown to differentially regulate cell fate in two-dimensional (2-D) cell cultures. Cells anchored in a three-dimensional (3-D) microenvironment show significantly altered phenotypes, from altered cell adhesions, to cell migration and differentiation. Yet, no systematic analysis has been performed that studied how the integrated cellular responses to the physical characteristics of the environment are regulated by dimensionality (2-D versus 3-D).

Methodology/Principal Findings

Arrays of 5 or 10 µm deep microwells were fabricated in polydimethylsiloxane (PDMS). The actin cytoskeleton was compared for single primary fibroblasts adhering either to microfabricated adhesive islands (2-D) or trapped in microwells (3-D) of controlled size, shape, and wall rigidity. On rigid substrates (Young''s Modulus = 1 MPa), cytoskeleton assembly within single fibroblast cells occurred in 3-D microwells of circular, rectangular, square, and triangular shapes with 2-D projected surface areas (microwell bottom surface area) and total surface areas of adhesion (microwell bottom plus wall surface area) that inhibited stress fiber assembly in 2-D. In contrast, cells did not assemble a detectable actin cytoskeleton in soft 3-D microwells (20 kPa), regardless of their shapes, but did so on flat, 2-D substrates. The dependency on environmental dimensionality was also reflected by cell viability and metabolism as probed by mitochondrial activities. Both were upregulated in 3-D cultured cells versus cells on 2-D patterns when surface area of adhesion and rigidity were held constant.

Conclusion/Significance

These data indicate that cell shape and rigidity are not orthogonal parameters directing cell fate. The sensory toolbox of cells integrates mechanical (rigidity) and topographical (shape and dimensionality) information differently when cell adhesions are confined to 2-D or occur in a 3-D space.  相似文献   

15.
Microfabricated platform for studying stem cell fates   总被引:1,自引:0,他引:1  
Platforms that allow parallel, quantitative analysis of single cells will be integral to realizing the potential of postgenomic biology. In stem cell biology, the study of clonal stem cells in multiwell formats is currently both inefficient and time-consuming. Thus, to investigate low-frequency events of interest, large sample sizes must be interrogated. We report a simple, versatile, and efficient micropatterned arraying system conducive to the culture and dynamic monitoring of stem cell proliferation. This platform enables: 1) parallel, automated, long-term ( approximately days to weeks), live-cell microscopy of single cells in culture; 2) tracking of individual cell fates over time (proliferation, apoptosis); and 3) correlation of differentiated progeny with founder clones. To achieve these goals, we used microfabrication techniques to create an array of approximately 10,000 microwells on a glass coverslip. The dimensions of the wells are tunable, ranging from 20 to >500 microm in diameter and 10-500 microm in height. The microarray can be coated with adhesive proteins and is integrated into a culture chamber that permits rapid (approximately min), addressable monitoring of each well using a standard programmable microscope stage. All cells share the same media (including paracrine survival signals), as opposed to cells in multiwell formats. The incorporation of a coverslip as a substrate also renders the platform compatible with conventional, high-magnification light and fluorescent microscopy. We validated this approach by analyzing the proliferation dynamics of a heterogeneous adult rat neural stem cell population. Using this platform, one can further interrogate the response of distinct stem cell subpopulations to microenvironmental cues (mitogens, cell-cell interactions, and cell-extracellular matrix interactions) that govern their behavior. In the future, the platform may also be adapted for the study of other cell types by tailoring the surface coatings, microwell dimensions, and culture environment, thereby enabling parallel investigation of many distinct cellular responses.  相似文献   

16.
Tumor spheroids are increasingly recognized as an important in vitro model for the behavior of tumor cells in three dimensions. More physiologically relevant than conventional adherent-sheet cultures, they more accurately recapitulate the complexity and interactions present in real tumors. In order to harness this model to better assess tumor biology, or the efficacy of novel therapeutic agents, it is necessary to be able to generate spheroids reproducibly, in a controlled manner and in significant numbers.The AggreWell system consists of a high-density array of pyramid-shaped microwells, into which a suspension of single cells is centrifuged. The numbers of cells clustering at the bottom of each microwell, and the number and ratio of distinct cell types involved depend only on the properties of the suspension introduced by the experimenter. Thus, we are able to generate tumor spheroids of arbitrary size and composition without needing to modify the underlying platform technology. The hundreds of microwells per square centimeter of culture surface area in turn ensure that extremely high production levels may be attained via a straightforward, nonlabor-intensive process. We therefore expect that this protocol will be broadly useful to researchers in the tumor spheroid field.  相似文献   

17.
Multiplexed single‐cell protein secretion analysis provides an in‐depth understanding of cellular heterogeneity in intercellular communications mediated by secreted proteins in both fundamental and clinical research. However, it has been challenging to increase the proteomic parameters co‐profiled from every single cell in a facile way. Herein, a simple method to improve the multiplexed proteomic parameters of PDMS microwell based single‐cell secretion analysis platform by sandwiching PDMS stencil in between two antibody‐coated glass slides is introduced. Two different antibody panels can be immobilized easily by static coating, without using sophisticated fluid handling or bulky equipment. 5‐plexed, 3‐fluorescence color single‐cell secretion assay is demonstrated with this platform to investigate human monocytic U937 cells in response to lipopolysaccharide and phorbol myristate acetate stimulation, which identified the existence of functional subsets dictated by different cytokine profiles. The technology introduced here is simple, easy to operate, which holds great potential to become a powerful tool for profiling multiplexed single‐cell cytokine secretion at high throughput to dissect cellular heterogeneity in secretome signatures.  相似文献   

18.
Imaging optical fibres have been etched to prepare microwell arrays. These microwells have been loaded with sensing materials such as bead-based sensors and living cells to create high-density sensor arrays. The extremely small sizes and volumes of the wells enable high sensitivity and high information content sensing capabilities.  相似文献   

19.
When plated at high cell density in a microwell culture system, freshly dissociated embryonic mouse cerebellar cells assemble into reproducible, 3-dimensional patterns. The addition of the dimeric lectin Succinyl Concanavalin A blocks reversibly the formation of the microwell pattern, suggesting that cell surface carbohydrates affect the reassociation behavior of embryonic mouse cerebellar cells. Agglutination studes of dissociated cell populations harvested from different regions of the embryonic brain reveal that different lectins agglutinate cell populations from different embryonic brain regions. Cells from E13 cerebellum are agglutinated with Concanavalin A, wheat germ agglutinin, Ricinus communis agglutinin, mol wt 60,000, Ricinus communis agglutinin, mol wt 120,000, and Lens culinaris, but not by soybean agglutinin or a fucose-binding protein. Cells from the midbrain are agglutinated only with Concanavalin A, Ricinus communis agglutinin, mol wt 60,000 and Ricinus communis agglutinin, mol wt 120,000; those from the cerebral cortex are agglutinated only with Lens culinaris; and those from the medulla are agglutinated only with Ricinus communis agglutinin, mol wt 60,000, and Ricinus communis agglutinin, mol wt 120,000. In addition, agglutination of cerebellar cells with Concanavalin A, wheat germ agglutinin, and Ricinus communis agglutinin is diminished over the course of development from embryonic day 13 to postnatal day 7. These studies suggest regional differences in the cell surfaces of the developling brain that are further modulated during the differentiation of the tissues. On a poly(D-lysine) treated substrate in microwell cultures, cell migration is unique to the cerebellum of the 4 brain regions studied. Surfaces treated with carbohydrate-derivatized poly(D-lysine) are currently being tested for their efficacy as substrates for differential cell migration.  相似文献   

20.
Microstructure-based patterned surfaces with antifouling capabilities against a wide range of organisms are yet to be optimised. Several studies have shown that microtopographic features affect the settlement and the early stages of biofilm formation of microorganisms. It is speculated that the fluctuating stress–strain rates developed on patterned surfaces disrupt the stability of microorganisms. This study investigated the dynamic interactions of a motile bacterium (Escherichia coli) with microtopographies in relation to initial settlement. The trajectories of E. coli across a patterned surface of a microwell array within a microchannel-based flow cell system were assessed experimentally with a time-lapse imaging module. The microwell array was composed of 256 circular wells, each with diameter 10?μm, spacing 7?μm and depth 5?μm. The dynamics of E. coli over microwell-based patterned surfaces were compared with those over plain surfaces and an increased velocity of cell bodies was observed in the case of patterned surfaces. The experimental results were further verified and supported by computational fluid dynamic simulations. Finally, it was stated that the nature of solid boundaries and the associated microfluidic conditions play key roles in determining the dynamic stability of motile bacteria in the close vicinity over surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号