首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Hormone and seed-specific regulation of pea fruit growth   总被引:7,自引:0,他引:7       下载免费PDF全文
Growth of young pea (Pisum sativum) fruit (pericarp) requires developing seeds or, in the absence of seeds, treatment with gibberellin (GA) or auxin (4-chloroindole-3-acetic acid). This study examined the role of seeds and hormones in the regulation of cell division and elongation in early pea fruit development. Profiling histone H2A and gamma-tonoplast intrinsic protein (TIP) gene expression during early fruit development identified the relative contributions of cell division and elongation to fruit growth, whereas histological studies identified specific zones of cell division and elongation in exocarp, mesocarp, and endocarp tissues. Molecular and histological studies showed that maximal cell division was from -2 to 2 d after anthesis (DAA) and elongation from 2 to 5 DAA in pea pericarp. Maximal increase in pericarp gamma-TIP message level preceded the maximal rate of fruit growth and, in general, gamma-TIP mRNA level was useful as a qualitative marker for expanding tissue, but not as a quantitative marker for cell expansion. Seed removal resulted in rapid decreases in pericarp growth and in gamma-TIP and histone H2A message levels. In general, GA and 4-chloroindole-3-acetic acid maintained these processes in deseeded pericarp similarly to pericarps with seeds, and both hormones were required to obtain mesocarp cell sizes equivalent to intact fruit. However, GA treatment to deseeded pericarps resulted in elevated levels of gamma-TIP mRNA (6 and 7 DAA) when pericarp growth and cell enlargement were minimal. Our data support the theory that cell division and elongation are developmentally regulated during early pea fruit growth and are maintained by the hormonal interaction of GA and auxin.  相似文献   

7.
8.
9.
Many plant genetic engineering applications require spatial expression of genes which in turn depends upon the availability of specific promoters. In cereals, genetic modification of flowering and grain setting to influence yield and grain quality is of significant interest. PsEND1 is a pea promoter that displays expression in the epidermis, connective tissue, endothecium and middle layers during different stages of anther development. No homeologous sequence of this promoter or its coding sequence has been found in cereals. This present work aimed at the characterization of the pea PsEND1 promoter driving the expression of the gusA gene in transgenic wheat. Nine transgenic lines were produced by particle bombardment and analyzed for the expression of the gusA gene throughout development by histochemical GUS staining and by RT-PCR in vegetative and reproductive tissues and organs. Expression of the gusA gene was first detected during pollen development, in microspores at binucleate stage. Activity of the gusA gene was also found in mature pollen, after anthesis. Following pollen grain germination, expression of the gusA gene was seen from an early stage of pollen tube formation until advanced stages, approaching the ovary. No further expression of the gusA gene was detected after fertilization, nor during seed development. The results reported here show that the PsEND1 promoter is functional in wheat and its patterns of expression may be of interest for the application of genetic modification in wheat breeding.  相似文献   

10.
11.
Proenkephalin A (PEA), a neuropeptide-encoding gene, is widely expressed in the nervous and endocrine systems. Recently, we demonstrated that in addition to its abundance in fetal brain tissue; PEA is markedly expressed in nondifferentiated mesodermal cells of developing fetuses. To evaluate the implication of these findings for the normal development of tissues of mesodermal origin, we examined the expression of PEA in rat mesenchymal tissues during pre- and postnatal development. Using in situ hybridization analysis combined with RNA blots and a Met-enkephalin-specific radioimmunoassay, we showed that (i) PEA mRNA levels in embryonic and newborn mesenchymal derivative tissues were as high as in the developing brain, (ii) PEA mRNA concentrations in these tissues dropped to undetectable levels shortly after birth, and (iii) this mRNA was translated and processed differentially among different mesenchymal tissues, yielding a tissue-specific pattern of PEA-derived peptides. Our results demonstrate multilevel regulation of PEA gene expression during ontogenic development of mesenchymal derivative tissues. The transient expression and the correlation between PEA mRNA and tissue maturation support the notion that peptides encoded by PEA play a significant role in normal development of these tissues. These findings provide a framework for examination of the mechanisms and roles of PEA gene expression during mesenchymal ontogeny.  相似文献   

12.
13.
Storage protein gene expression has been studied in relation to mitotic activity to ascertain whether these processes are linked during embryo development in pea. Sections from immature pea embryos were probed by in situ hybridisation to show the pattern of vicilin storage protein gene expression. In addition, the location of mitotic cells was identified using fluorescence microscopy. Vicilin mRNA was first localised in the parenchyma cells of the upper adaxial region of the cotyledons. As the embryos increased in fresh weight, gene expression spread from this region, in a wave-like manner, down and across the cotyledons. The gene was only expressed in those regions of the embryo that lacked mitotic activity.  相似文献   

14.
The translocon at the outer envelope membrane of chloroplasts (Toc) mediates the recognition and initial import into the organelle of thousands of nucleus-encoded proteins. These proteins are translated in the cytosol as precursor proteins with cleavable amino-terminal targeting sequences called transit peptides. The majority of the known Toc components that mediate chloroplast protein import were originally identified in pea, and more recently have been studied most extensively in Arabidopsis. With the completion of the tomato genome sequencing project, it is now possible to identify putative homologues of the chloroplast import components in tomato. In the work reported here, the Toc GTPase cDNAs from tomato were identified, cloned and analyzed. The analysis revealed that there are four Toc159 homologues (slToc159-1, -2, -3 and -4) and two Toc34 homologues (slToc34-1 and -2) in tomato, and it was shown that tomato Toc159 and Toc34 homologues share high sequence similarity with the comparable import apparatus components from Arabidopsis and pea. Thus, tomato is a valid model for further study of this system. The expression level of Toc complex components was also investigated in different tissues during tomato development. The two tomato Toc34 homologues are expressed at higher levels in non-photosynthetic tissues, whereas, the expression of two tomato Toc159 homologues, slToc159-1 and slToc159-4, were higher in photosynthetic tissues, and the expression patterns of slToc159-2 was not significantly different in photosynthetic and non-photosynthetic tissues, and slToc159-3 expression was limited to a few select tissues.  相似文献   

15.
D. Orzáez  R. Blay  A. Granell 《Planta》1999,208(2):220-226
The role of ethylene in the control of senescence of both petals and unpollinated carpels of pea was investigated. An increase in ethylene production accompanied senescence, and the inhibitors of ethylene action were effective in delaying senescence symptoms in different flower verticils. Pollination did not seem to trigger the senescence syndrome in the corolla as deduced from the observation that petals from pollinated and unpollinated flowers and from flowers whose carpels had been removed senesced at the same time. A cDNA clone encoding a putative ethylene-response sensor (psERS) was isolated from pea flowers, and the pattern of expression of its mRNA was studied during development and senescence of different flower tissues. The levels of psERS mRNA paralleled ethylene production (and also levels of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) mRNA) in both petals and styles. Silver thiosulfate treatments were efficient at preventing ACO and psERS mRNA induction in petals. However, the same inhibitor showed no ability to modify expression patterns in pea carpels around the anthesis stage, suggesting different controls for ethylene synthesis and sensitivity in different flower organs. Received: 18 June 1998 / Accepted: 22 December 1998  相似文献   

16.
17.
In Pisum sativum, two classes of genes encode distinct isoforms of cytosolic glutamine synthetase (GS). The first class comprises two nearly identical or “twin” GS genes (GS341 and GS132), while the second comprises a single GS gene (GS299) distinct in both coding and noncoding regions from the “twin” GS genes. Gene-specific analyses were used to monitor the individual contribution of each gene for cytosolic GS during root nodule development and in cotyledons during germination, two contexts where large amounts of ammonia must be assimilated by GS for nitrogen transport. mRNAs corresponding to all three genes for cytosolic GS were shown to accumulate coordinately during a time course of nodule development. All the GS mRNAs also accumulate to wild-type levels in mutant nodules formed by a nifD strain of Rhizobium leguminosarum indicating that induced GS expression in pea root nodules does not depend on the production of ammonia. Distinct patterns of expression for the two classes of GS genes were observed in certain mutant root nodules and most dramatically in cotyledons of germinating seedlings. The different patterns of expression between the two classes of genes for cytosolic GS suggests that their distinct gene products may serve nonoverlapping functions during pea development.  相似文献   

18.
19.
20.
The Unifoliata (Uni) gene plays a major role in development of the compound leaf in pea, but its regulation is unknown. In this study, we examined the effects of plant hormones on the expression of Uni, PsPK2 (the gene for a pea homolog of Arabidopsis PID, a regulator of PIN1 targeting), PsPIN1 (the major gene for a putative auxin efflux carrier) and LE (a gibberellin biosynthesis gene, GA3ox), and also examined mutual hormonal regulation of these genes, in pea shoot tips, including a number of mutants. The Uni promoter possessed putative auxin and gibberellin response elements. The PsPIN1 mRNA levels were increased in afila, which replaces leaflets with branched tendrils; and reduced in tendrilless, which replaces tendrils with leaflets, compared with the wild type (WT). In contrast, mRNA levels of LE were increased in uni and tendrilless and decreased in afila compared with the WT. Uni, PsPK2 and PsPIN1 are positively regulated by gibberellin and auxin, and were induced to higher levels by simultaneous application of auxin and gibberellin. Auxin induction of Uni, PsPK2 and PsPIN1 did not require de novo protein synthesis. LE was positively regulated by auxin and cytokinin. In conclusion, these results support the hypothesis that auxin and gibberellin positively regulate Uni, which controls pea compound leaf development. Also, Uni, PsPIN1, PsPK2 and LE are expressed differentially in the leaf mutants, suggesting that mutual regulation by auxin and gibberellin promotes compound leaf development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号