首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
I. W. Gara    H. Kondo    T. Maeda    N. Inouye  T. Tamada 《Journal of Phytopathology》1998,146(7):357-363
Calanthe mild mosaic potyvirus (CalMMV), a previously undescribed virus found in several locations in Japan, causes mild leaf mosaic and flower colour breaking of Calanthe plants. CalMMV was mechanically transmitted only to Calanthe sp., Phalaenopsis sp. and Tetragonia expansa of 50 plant species tested and was transmitted by the aphid Myzus persicae in a nonpersistent manner. The virus has flexuotis particles about 764 nm long and induced the formation of intracellular cytoplasmic cylindrical inclusions. The virus particles contain a single poly-peptide of 32.0 kDa and a single RNA of mol. weight 3.1 × 106. As determined by immuno-electron microscopy, CalMMV is distantly related to the Japanese isolate of dendrobium mosaic potyvirus (DeMV-J), but it showed no serological relationship to any of seven other potyviruses. The sequence of the 3'-terminal 1306 nucleo-tides of the viral genome was determined. The coat protein (CP) coding sequence is predicted to be 804 nucleotides in length, encoding a protein of 268 amino acids with a calculated mol. weight of 30 389. The 3' noncoding region is 169 nucleotides long and is followed by a polyadenylate tract. The amino acid sequence of the CP of CalMMV was 73% homologous to that of DeMV-J, but less than 66% to other potyviruses.  相似文献   

2.
The Natural Occurrence of Turnip Mosaic Potyvirus in Allium ampeloprasum   总被引:1,自引:0,他引:1  
A. Gera    D.-E. Lesemann    J. Cohen    A. Franck    S. Levy  R. Salomon 《Journal of Phytopathology》1997,145(7):289-293
An isolate of turnip mosaic potyvirus (TuMV) was obtained from Allium ampeloprasum grown in commercial greenhouses in Israel. Symptoms on infected plants include systemic chlorosis and yellow stripes, accompanied by growth reduction. Leaves were distorted, often showing necrotic flecking. The virus was readily transmitted mechanically, and in a non-persistent manner by aphids, among Allium, Chenopodium. Gomphrena and some Nicotiana spp. Purified preparations contained numerous filamentous particles similar to those observed in crude extracts of infected leaves. Particles from crude plant extracts had a normal length of 806 nm. Cells of infected plants contained cylindrical cytoplasmic inclusions with pinwheel, scrolls and laminated aggregates which indicated the presence of a potyvirus of Edwardson's subgroup III. and which resemble those of turnip mosaic virus (TuMV), The virus reacted strongly with antiserum to typical isolates of TuMV in immunoelectron microscopy and western blotting but not with antisera to several other potyviruses. Based on serological reactivity, electron microscopy, aphid transmission and cytopathology, the virus was identified as an isolate of TuMV.  相似文献   

3.
The DT-1G mutant of tobacco mosaic virus (TMV) which has no coat protein was used to study the specific involvement of coat protein in TMV cross protection in N. sylvestris. Leaves of N. sylvestris previously inoculated with the mutantor the common strain of TMV were challenged with either turnip mosaic virus (TuMV) or a strain of TMV (TMV-N). Both TuMV and TMV-N produce necrotic lesions on N. sylvestris. About one-half as many lesions were produced by TuMV and TMV-N on leaves, inoculated with the DT-1G mutant compared with lesions produced by the same inoculum on control leaves. When leaves of N. sylvestris previously inoculated with the common strain of TMV were challenged with either TuMV or TMV-N, TuMV produced about one-half as many lesions as on control leaves whereas TMV-N produced about one-tenth as many lesions as on control leaves. A high level of non-specific resistance was induced by the mutant without coat protein, but it did not specifically protect against TMV.  相似文献   

4.
A virus reported earlier to cause a green mosaic disease of eggplant in Nigeria was studied in more detail. Its filamentous particles with a normal length of 820 nm reacted in immunoelectron microscopical tests strongly with the homologous antiserum and less strongly with antisera to dioscorea green banding mosaic, groundnut eyespot, zucchini yellow mosaic viruses and to a tomato potyvirus isolate from Taiwan. No reactions were seen with antisera to 25 other potyviruses. Several new host plants were identified. Infected cells contained cylindrical inclusions with scrolls and short curved laminated aggregates and clusters of small vesicles with electron-dense content. Host range and serological reactivities differentiate the virus for which the name eggplant green mosaic virus is suggested from all potyviruses so far known.  相似文献   

5.
The capsid protein (CP) sizes of seven dasheen mosaic virus (DsMV) isolates and one isolate of vanilla mosaic virus were estimated to be 38–47 kDa and 47 kDa, respectively, based on Western blot analyses using DsMV polyclonal antiserum. The CP sizes of 12 other potyviruses were estimated to be 31–36 kDa. Apparent CP sizes of the DsMV isolates extracted from their original hosts were 47 kDa ( Xanthosoma caracu ), 45 kDa ( Colocasia esculenta , Zantedeschia aethiopica ), and 38–46 kDa ( Caladium hortulanum ). Propagation in seedlings of Philodendron selloum did not affect the CP sizes of any of the individual DsMV isolates. The same characteristic CP sizes were also detected in Western blot analyses of these isolates, using polyclonal antisera of eight other potyviruses, or using Agdia Poty 1 monoclonal antiserum, and using three monoclonal antisera of papaya ringspot virus type W. The apparent CP size and pattern of apparent breakdown products as revealed by Western blots of extracts from infected aroids may be used in the characterization and differentiation of DsMV isolates.  相似文献   

6.
7.
A new virus associated with mosaic, yellowing and necrotic symptoms in escarole has been isolated recently in southern Italy. The virus, for which the name escarole mosaic virus (EMV) is proposed, was transmissible by mechanical methods, by seeds and probably by pollen but not by Acyrthosiphon pisum, Aphis gossypii, Myzus persicae, Trialeurodes vaporariorum or Frankliniella occidentalis. The virions showed a single coat protein of about 32 kDa and eight encapsidated RNA species. Viral preparations sedimented as four components in sucrose density gradients. Electron microscopy indicated the presence of spherical particles with a diameter of 25 nm. Ultrastructural investigations on infected tissues revealed the formation of atypical inclusion bodies.  相似文献   

8.
9.
采用RT-PCR方法自紫藤脉花叶病毒北京分离物(WVMV-BJ)的基因组中分离出其CP基因,连接到原核表达载体pET22b( )上。获得的重组子pET-WVMVCP转化大肠杆菌BL21(DE3)后,用IPTG进行诱导表达。SDS-PAGE和Western blot分析表明,cp基因在大肠杆菌中获得了高效表达,融合蛋白分子量约为34.4kDa。将融合蛋白纯化后免疫兔子,获得了特异性较高的抗血清。微量免疫沉淀法测定该抗血清的效价为1/1024,酶联法(enzyme-linked immunosorbant assay,ELISA)测定的效价为1/8192。  相似文献   

10.
An isolate of apple mosaic virus, designated ApMV-J, was isolated from rose cv. Sweet Surrender in New York State, USA. Mechanical transmission of ApMV-J from rose to cucumber was facilitated by preparing inocula with 0.03 M sodium phosphate buffer containing 0.02 M 2-mercap-toethanol and 1 % polyvinylpyrolidone. Catharanthus roseus cv. Little Linda was a good virus maintenance host and Cucumis sativus cv. Lemon a good propagation host. Contaminating host proteins were substantially reduced by including polyethylene glycol in the purification protocol. Purified virus had high A260/280 nm values and contained virus particles of c 25—26 nm in diameter; most particles were isometric but a few were bacilliform. The M.Wts. of the four nucleic acids of ApMV-J, determined in non-denaturing and denaturing agarose gels, were estimated at 1.16, 0.98, 0.68 and 0.35 × 106 and 1.0, 0.91, 0.66 and 0.35 × 106, respectively. The viral coat protein M. Wt. was estimated to be 27 kDa.  相似文献   

11.
黄瓜绿斑驳花叶病毒辽宁分离物全基因组序列测定   总被引:7,自引:0,他引:7  
以感病组织总RNA为模板,采用RT-PCR方法扩增并测定黄瓜绿斑驳花叶病毒(Cucumber green mottle mosaic virus,CGMMV)辽宁分离物(CGMMV-LN)的基因组全序列。CGMMV-LN基因组全长6 422 nt,5'非编码区(noncoding region,NCR)和3'NCR分别为59 nt和175 nt。CGMMV-LN编码的4个蛋白依次是186 kD和129kD的复制酶,29 kD的移动蛋白和17.4 kD的外壳蛋白。CGMMV-LN与其他4个CGMMV分离物基因组核苷酸序列同源性为97.6%~99.3%,与同属其他3种病毒基因组核苷酸序列同源性仅为61.7%~62.8%。基于186kD复制酶和外壳蛋白氨基酸序列的同源树显示:侵染葫芦科作物的烟草花叶病毒属病毒可分为2个亚组,亚组I包括所有CGMMV分离物,亚组II包括Kyuri绿斑驳花叶病毒(Kyuri green mottle mosaic virus,KGMMV)、黄瓜果实斑驳花叶病毒(Cucumber fruit mottle mosaic virus,CFMMV)和小西葫芦绿斑驳花叶病毒(Zucchini ...  相似文献   

12.
杭州地区发生的玉米花叶病由甘蔗花叶病毒引起   总被引:6,自引:0,他引:6  
从杭州地区呈现玉米矮花叶典型症状的玉米病组织中提纯得到大量线状病毒粒子,大多数长度为750?nm。病组织中含有大量风轮状内含体和板状集结体。病毒外壳蛋白为33.6 kD。病毒RNA13’端序列(1.8 kb)与甘蔗花叶病毒(SCMV)同源性最高,达71.5%~99.1%,与高梁花叶病毒(SrMV)同源性次之,为67.8%~68.5%,与玉米矮花叶病毒(MDMV)同源性最低,仅为38.4%~48.4%,从而初步认为此病害由SCMV引起。根据已发表的SCMV外壳蛋白氨基酸序列作亲缘性分析,表明SCMV可分为美国、南非、澳大利亚;德国和中国三大类。  相似文献   

13.
Immunity to a UK isolate (UK 1) of turnip mosaic virus (TuMV) was studied in eight lines of oilseed rape selected from cv Rafal. Six of these lines were uniformly immune and two segregated. Segregation ratios in the F2 generation of reciprocal crosses between two uniformly immune lines and two uniformly susceptible cultivars (Mikado and Yeoman) showed that immunity was controlled by a dominant nuclear allele. The immunity was confirmed by the inability to detect virus particles in mechanically inoculated plants by back inoculations, ELISA and ISEM tests. Plants were immune to repeated inoculations and aphid transmissions. The immunity was effective against one other UK isolate and two German isolates of TuMV. Another UK isolate (UK 3) and a Greek isolate partially overcame the immunity causing local infection and a Canadian and a Danish isolate overcame it completely causing systemic mosaic-type symptoms. When these immunity-breaking strains were tested against swede line 165 which is also immune to UK 1 TuMV, the Canadian isolate overcame the immunity whereas the Danish isolate did not. Using this swede line, one susceptible and one immune line of oilseed rape as differentials, four distinct groups of TuMV isolates could be identified. Selections of oilseed rape immune to UK TuMV isolates were more severely affected by the Canadian TuMV than UK TuMV susceptible selections. The gene determining immunity to TuMV had no pleiotropic effect on susceptibility to cauliflower mosaic virus. The implications on these findings in relation to breeding for virus resistance are discussed.  相似文献   

14.
The multifunctional protein translationally controlled tumour protein (TCTP) was previously identified as necessary for infection by the potyvirus pepper yellow mosaic virus. Using turnip mosaic virus (TuMV) as a model to study potyvirus biology, we confirmed that TCTP has a positive effect on virus infection. Living cell confocal microscopy demonstrated that TCTP colocalises with 6K2-tagged replication vesicles and with a perinuclear globular structure typically observed during potyvirus infection. Also, TCTP silenced protoplasts showed reduced virus accumulation, quantified by qRT-PCR, which suggests an effect on virus replication, translation or other intracellular process. Finally, TCTP silencing in plants reduced the accumulation of two species belonging to Orthotospovirus and a Begomovirus genus, which are not closely related to potyviruses. The results suggest that TCTP is a general susceptibility factor to several unrelated viruses.  相似文献   

15.
During storage at - 20 °C of purified preparations of peanut stripe and turnip mosaic potyviruses, infectivity of intact particles and RNA extracted from preserved preparations decreased. This decrease can be attributed to several factors such as virus aggregation and alterations of the nucleic acids and coat proteins. However, the addition to the preparations of 0.5% peptone or 1% sucrose permitted a high level of infectivity to be retained for extended periods. Freeze-drying led to aggregation of the particles and in a marked decrease of infectivity. Virus aggregatioti and RNA degradation were suppressed by the addition of protectants such as 0.5% lysine. Results suggest that other potyviruses may be well preserved under similar conditions.  相似文献   

16.
Experimental data are provided for the presence of a plant protein that interacts with the capsid protein (CP) of turnip mosaic potyvirus (TuMV). The receptor-like protein was identified by exploiting the molecular mimicry potential of anti-idiotypic antibodies. A single-chain Fv molecule derived from the monoclonal antibody 7A (Mab-7A), which recognizes the CP of TuMV, was produced in Escherichia coli and the recombinant protein was used to raise rabbit antibodies. The immune serum reacted with Mab-7A but not with a monoclonal antibody of the same isotype, indicating that anti-idiotypic antibodies were produced. These anti-idiotypic antibodies recognized a 37 kDa protein from Lactuca sativa. Complex formation between the anti-idiotypic antibodies and the plant protein was inhibited by the CP of TuMV which indicates that the plant protein interacts with the viral protein. The 37 kDa protein was localized in chloroplasts and was detected in other plant species.  相似文献   

17.
18.
To establish infection, plant viruses are evolutionarily empowered with the ability to spread intercellularly. Potyviruses represent the largest group of known plant-infecting RNA viruses, including many agriculturally important viruses. To better understand intercellular movement of potyviruses, we used turnip mosaic virus (TuMV) as a model and constructed a double-fluorescent (green and mCherry) protein-tagged TuMV infectious clone, which allows distinct observation of primary and secondary infected cells. We conducted a series of deletion and mutation analyses to characterize the role of TuMV coat protein (CP) in viral intercellular movement. TuMV CP has 288 amino acids and is composed of three domains: the N-terminus (amino acids 1–97), the core (amino acids 98–245), and the C-terminus (amino acids 246–288). We found that deletion of CP or its segments amino acids 51–199, amino acids 200–283, or amino acids 265–274 abolished the ability of TuMV to spread intercellularly but did not affect virus replication. Interestingly, deletion of amino acids 6–50 in the N-terminus domain resulted in the formation of aberrant virions but did not significantly compromise TuMV cell-to-cell and systemic movement. We identified the charged residues R178 and D222 within the core domain that are essential for virion formation and TuMV local and systemic transport in plants. Moreover, we found that trans-expression of the wild-type CP either by TuMV or through genetic transformation-based stable expression could not rescue the movement defect of CP mutants. Taken together these results suggest that TuMV CP is not essential for viral genome replication but is indispensable for viral intercellular transport where only the cis-expressed CP is functional.  相似文献   

19.
西瓜花叶病毒中国分离株全基因组核苷酸序列测定   总被引:3,自引:0,他引:3  
西瓜花叶病毒(Watermelon mosaic virus,WMV)是马铃薯Y病毒属(Potyvirus)成员,主要危害西瓜和甜瓜,引起花叶病。在田间,该病害主要由蚜虫以非持久性方式传播。西瓜和甜瓜花叶病在国内陕西、山东、云南、辽宁、山西、新疆、河南和黑龙江等地广泛发生[1-6]。从20世纪80年代中期开始发生,逐渐上升为普遍发生的主要病害。我国大部分地区因西瓜和甜瓜病毒病造成的损失为30%~50%,甚至会绝产,西瓜花叶病毒已经成为制约西瓜和甜瓜高产稳产最主要的因素之一[7]。到目前为止,多数工作集中在对西瓜和甜瓜病毒病的鉴定,在分子生物学上仅限于对CP基因…  相似文献   

20.
Nasturtium mosaic virus, hitherto considered to be a carlavirus, was shown to be a member of the potyvirus group by its morphology, capsid protein size, positive reaction with potyvirus group antiserum and the presence in its host of cytoplasmic inclusions ("pinwheels"). It is serologically unrelated to five other well characterized potyviruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号