首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organelles, such as mitochondria and chloroplasts, are derived from endosymbionts. Gene transfer events from organelles to the nucleus have occurred over evolutionary time. In the case that a transferred gene in the nucleus needs to go back to the original organelle, it must obtain targeting information for sorting its protein to that organelle. Here, we reveal that the genes for the ribosomal proteins L2 and S4 in the Arabidopsis thaliana mitochondrial (mt) genome contain information for protein targeting into the mitochondria. Similarly, the genes for the ribosomal proteins L2 and S19 in the Oryza sativa mt genome contain information for protein targeting into mitochondria. These results suggest that targeting information already existed in each gene in the plant mt genome before the transfer event to the nucleus occurred. We provide new insights into the timing of the appearance of targeting signals in evolution.  相似文献   

2.
To investigate the evolution pattern and phylogenetic utility of duplicate control regions (CRs) in mitochondrial (mt) genomes, we sequenced the entire mt genomes of three Ixodes species and part of the mt genomes of another 11 species. All the species from the Australasian lineage have duplicate CRs, whereas the other species have one CR. Sequence analyses indicate that the two CRs of the Australasian Ixodes ticks have evolved in concert in each species. In addition to the Australasian Ixodes ticks, species from seven other lineages of metazoa also have mt genomes with duplicate CRs. Accumulated mtDNA sequence data from these metazoans and two recent experiments on replication of mt genomes in human cell lines with duplicate CRs allowed us to re-examine four intriguing questions about the presence of duplicate CRs in the mt genomes of metazoa: (1) Why do some mt genomes, but not others, have duplicate CRs? (2) How did mt genomes with duplicate CRs evolve? (3) How could the nucleotide sequences of duplicate CRs remain identical or very similar over evolutionary time? (4) Are duplicate CRs phylogenetic markers? It appears that mt genomes with duplicate CRs have a selective advantage in replication over mt genomes with one CR. Tandem duplication followed by deletion of genes is the most plausible mechanism for the generation of mt genomes with duplicate CRs. Once duplicate CRs occur in an mt genome, they tend to evolve in concert, probably by gene conversion. However, there are lineages where gene conversion may not always occur, and, thus, the two CRs may evolve independently in these lineages. Duplicate CRs have much potential as phylogenetic markers at low taxonomic levels, such as within genera, within families, or among families, but not at high taxonomic levels, such as among orders.  相似文献   

3.
Summary Mitochondrial (mt) and chloroplast (ct) DNAs from sugar beet lines carrying normal and introduced sources of male sterile cytoplasms have been characterized and compared on the basis of restriction enzyme analysis. Normal cytoplasm was shown to contain mt and ctDNAs which differed from those of the male sterile cytoplasms examined in the present investigation. On the other hand, four groups of male sterile cytoplasms could be differentiated by their own characteristic mtDNA digest patterns, while two were separated by ctDNA comparisons. In addition, a greater degree of variability of the mitochondrial genome is suggested. Our results also imply strict maternal inheritance of mt and ctDNAs. Thus, the organelle DNA assay provides a positive and alternative means of identifying various male sterile cytoplasms.  相似文献   

4.
Du FK  Peng XL  Liu JQ  Lascoux M  Hu FS  Petit RJ 《The New phytologist》2011,192(4):1024-1033
A recent model has shown that, during range expansion of one species in a territory already occupied by a related species, introgression should take place preferentially from the resident species towards the invading species and genome components experiencing low rates of gene flow should introgress more readily than those experiencing high rates of gene flow. Here, we use molecular markers from two organelle genomes with contrasted rates of gene flow to test these predictions by examining genetic exchanges between two morphologically distinct spruce Picea species growing in the Qinghai-Tibetan Plateau. The haplotypes from both mitochondrial (mt) DNA and chloroplast (cp) DNA cluster into two distinct lineages that differentiate allopatric populations of the two species. By contrast, in sympatry, the species share the same haplotypes, suggesting interspecific genetic exchanges. As predicted by the neutral model, all sympatric populations of the expanding species had received their maternally inherited mtDNA from the resident species, whereas for paternally inherited cpDNA introgression is more limited and not strictly unidirectional. Our results underscore cryptic introgressions of organelle DNAs in plants and the importance of considering rates of gene flow and range shifts to predict direction and extent of interspecific genetic exchanges.  相似文献   

5.
A number of studies indicated that lineages of animals with high rates of mitochondrial (mt) gene rearrangement might have high rates of mt nucleotide substitution. We chose the hemipteroid assemblage and the Insecta to test the idea that rates of mt gene rearrangement and mt nucleotide substitution are correlated. For this purpose, we sequenced the mt genome of a lepidopsocid from the Psocoptera, the only order of hemipteroid insects for which an entire mtDNA sequence is not available. The mt genome of this lepidopsocid is circular, 16,924 bp long, and contains 37 genes and a putative control region; seven tRNA genes and a protein-coding gene in this genome have changed positions relative to the ancestral arrangement of mt genes of insects. We then compared the relative rates of nucleotide substitution among species from each of the four orders of hemipteroid insects and among the 20 insects whose mt genomes have been sequenced entirely. All comparisons among the hemipteroid insects showed that species with higher rates of gene rearrangement also had significantly higher rates of nucleotide substitution statistically than did species with lower rates of gene rearrangement. In comparisons among the 20 insects, where the mt genomes of the two species differed by more than five breakpoints, the more rearranged species always had a significantly higher rate of nucleotide substitution than the less rearranged species. However, in comparisons where the mt genomes of two species differed by five or less breakpoints, the more rearranged species did not always have a significantly higher rate of nucleotide substitution than the less rearranged species. We tested the statistical significance of the correlation between the rates of mt gene rearrangement and mt nucleotide substitution with nine pairs of insects that were phylogenetically independent from one another. We found that the correlation was positive and statistically significant (R2 = 0.73, P = 0.01; Rs = 0.67, P < 0.05). We propose that increased rates of nucleotide substitution may lead to increased rates of gene rearrangement in the mt genomes of insects.  相似文献   

6.
7.
Species delimitation detected by molecular markers is complicated by introgression and incomplete lineage sorting between species. Recent modeling suggests that fixed genetic differences between species are highly related to rates of intraspecific gene flow. However, it remains unclear whether such differences are due to high levels of intraspecific gene flow overriding the spread of introgressed alleles or favoring rapid lineage sorting between species. In pines, chloroplast (cp) and mitochondrial (mt) DNAs are normally paternally and maternally inherited, respectively, and thus their relative rates of intraspecific gene flow are expected to be high and low, respectively. In this study, we used two pine species with overlapping geographical distributions in southeast China, P. massoniana and P. hwangshanensis, as a model system to examine the association between organelle gene flow and variation within and between species. We found that cpDNA variation across these two pine species is more species specific than mtDNA variation and almost delimits taxonomic boundaries. The shared mt/cp DNA genetic variation between species shows no bias in regard to parapatric versus allopatric species’ distributions. Our results therefore support the hypothesis that high intraspecific gene flow has accelerated cpDNA lineage sorting between these two pine species.  相似文献   

8.
Scleractinian corals have long been assumed to be a monophyletic group characterized by the possession of an aragonite skeleton. Analyses of skeletal morphology and molecular data have shown conflicting patterns of suborder and family relationships of scleractinian corals, because molecular data suggest that the scleractinian skeleton could have evolved as many as four times. Here we describe patterns of molecular evolution in a segment of the mitochondrial (mt) 12S ribosomal RNA gene from 28 species of scleractinian corals and use this gene to infer the evolutionary history of scleractinians. We show that the sequences obtained fall into two distinct clades, defined by PCR product length. Base composition among taxa did not differ significantly when the two clades were considered separately or as a single group. Overall, transition substitutions accumulated more quickly relative to transversion substitutions within both clades. Spatial patterns of substitutions along the 12S rRNA gene and likelihood ratio tests of divergence rates both indicate that the 12S rRNA gene of each clade evolved under different constraints. Phylogenetic analyses using mt 12S rRNA gene data do not support the current view of scleractinian phylogeny based upon skeletal morphology and fossil records. Rather, the two-clade hypothesis derived from the mt 16S ribosomal gene is supported.  相似文献   

9.
Numerous transport processes occur between the two mitochondrial (mt) membranes due to the diverse functions and metabolic processes of the mt organelle. The metabolite and ion transport through the mt outer membrane (OM) is widely assumed to be mediated by the porin pore, whereas in the mt inner membrane (IM) specific carriers are responsible for transport processes. Here, we provide evidence by means of Blue Native (BN)-PAGE analysis, co-immunoprecipitation, and tandem affinity purification that the two mt OM proteins Om14p and Om45p associate with the porin pore. Porin molecules seem to assemble independently to build the core unit. A subpopulation of these core units interacts with Om14p and Om45p. With preparative tandem affinity purification followed by MS analysis, we could identify interaction partners of this OM complex, which are mainly localized within the mt IM and function as carriers for diverse molecules. We propose a model for the role of the two OM proteins in addressing the porin pore to bind to specific channels in the mt IM to facilitate transport of metabolites.  相似文献   

10.
Xu X  Wu X  Yu Z 《Génome》2010,53(12):1041-1052
Extraordinary variation has been found in mitochondrial (mt) genome inheritance, gene content and arrangement among bivalves. However, only few bivalve mt genomes have been comparatively analyzed to infer their evolutionary scenarios. In this study, the complete mt genome of the venerid Paphia euglypta (Bivalvia: Veneridae) was firstly studied and, secondly, it was comparatively analyzed with other venerids (e.g., Venerupis philippinarum and Meretrix petechialis) to better understand the mt genome evolution within a family. Though several common features such as the AT content, codon usage of protein-coding genes, and AT/GC skew are shared by the three venerids, a high level of variability is observed in genome size, gene content, gene order, arrangements and primary sequence of nucleotides or amino acids. Most of the gene rearrangement can be explained by the "tandem duplication and random loss" model. From the observed rearrangement patterns, we speculate that block interchange between adjacent genes may be common in the evolution of mt genomes in venerids. Furthermore, this study presents several new findings in mt genome annotation of V. philippinarum and M. petechialis, and hence we have reannotated the genome of these two species as: (1) the ORF of the formerly annotated cox2 gene in V. philippinarum is deduced by using a truncated "T" codon and a second cox2 gene is identified; (2) the trnS-AGN gene is identified and marked in the mt genome of both venerids. Thus, this study demonstrated a high variability of mt genomes in the Veneridae, and showed the importance of comparative mt genome analysis to interpret the evolution of the bivalve mt genome.  相似文献   

11.
The complete nucleotide sequences of the mitochondrial (mt) genomes of the entoprocts Loxocorone allax and Loxosomella aloxiata were determined. Both species carry the typical gene set of metazoan mt genomes and have similar organizations of their mt genes. However, they show differences in the positions of two tRNA(Leu) genes. Additionally, the tRNA(Val) gene, and half of the long non-coding region, is duplicated and inverted in the Loxos. aloxiata mt genome. The initiation codon of the Loxos. aloxiata cytochrome oxidase subunit I gene is expected to be ACG rather than AUG. The mt gene organizations in these two entoproct species most closely resemble those of mollusks such as Katharina tunicata and Octopus vulgaris, which have the most evolutionarily conserved mt gene organization reported to date in mollusks. Analyses of the mt gene organization in the lophotrochozoan phyla (Annelida, Brachiopoda, Echiura, Entoprocta, Mollusca, Nemertea, and Phoronida) suggested a close phylogenetic relationship between Brachiopoda, Annelida, and Echiura. However, Phoronida was excluded from this grouping. Molecular phylogenetic analyses based on the sequences of mt protein-coding genes suggested a possible close relationship between Entoprocta and Phoronida, and a close relationship among Brachiopoda, Annelida, and Echiura.  相似文献   

12.
The expression of human mitochondrial thymidine kinase (mt TK) was investigated by polyacrylamide electrophoresis in 19 independent human-mouse somatic cell hybrids which allowed all human chromosomes to be analyzed. In 8 hybrid clones the presence of this enzymatic activity could be demonstrated. Human mt TK segregated concordantly with human adenine phosphoribosyltransferase (APRT) and human chromosome 16. Discordant segregation with all other human chromosomes was demonstrated by karyotype and isozyme analyses. These results suggest that human mt TK is coded for by a gene on chromosome 16 of the nucleus. Thus human mt TK is genetically different from human cytosol thymidine kinase which is coded for by a gene on chromosome 17. The appearance of one heteropolymer band after electrophoretic separation of human and murine mt TK supports the notion that both enzymes have dimeric structures.  相似文献   

13.
We determined the complete nucleotide sequence of the mitochondrial (mt) genome of a Malagasy poison frog, Mantella madagascariensis (family Mantellidae), and partial sequences of two Mantella (M. baroni and M. bernhardi) and two additional mantellid species (Boophis madagascariensis and Mantidactylus cf. ulcerosus). The M. madagascariensis genome was shown to be the largest (23kbp) of all vertebrate mtDNAs investigated so far. Furthermore, the following unique features were revealed: (1) the positions of some genes and gene regions were rearranged compared to mitochondrial genomes typical for vertebrates and other anuran groups, (2) two distinct genes and a pseudogene corresponding to transfer RNA gene for methionine (tRNA-Met) were encoded, and (3) two control regions with very high sequence homology were present. These features were shared by the two other Mantella species but not the other mantellid species, indicating dynamic genome reorganization in a common ancestor linage before divergence of the Mantella genus. The reorganization pathway could be explained by a model of gene duplication and deletion. Duplication and deletion events also seem to have been responsible for concerted sequence evolution of the control regions in Mantella mt genomes. It is also suggested that the pseudo tRNA-Met gene sustained for a long time in Mantella mt genomes possibly functions as a punctuation marker for NADH dehydrogenase subunit (ND) 2 mRNA processing. Phylogenetic analyses employing a large sequence data set of mt genes supported the monophyly of Mantellidae and Rhacophoridae and other recent phylogenetic views for ranoid frogs. The resultant phylogenetic relationship also suggested parallel occurrence of two tRNA-Met genes, duplicated control regions, and ND5 gene translocation in independent ranoid lineages.  相似文献   

14.
《Gene》1996,169(2):251-255
The mitochondrial (mt) genome is a potential means of gene delivery to human cells for therapeutic expression. As a first step towards this, we have synthesised a gene coding for mature human ornithine transcarbamylase (OTC) by recursive PCR using 18 oligodeoxyribonucleotides, each 70–80 nucleotides in length, with codons which should allow translation in accordance with both mammalian mt and universal codon usage. Flanking mt DNA sequences were incorporated which are designed to facilitate site-specific cloning into the mt genome. Expression of this human gene in Escherichia coli leads to an immunoreactive OTC product of the correct size and N-terminal amino-acid sequence, but which forms inclusion bodies and lacks enzymatic activity  相似文献   

15.
Characteristics of mitochondrial (mt) DNA such as gene content and arrangement, as well as mt tRNA secondary structure, are frequently used in comparative genomic analyses because they provide valuable phylogenetic information. However, most analyses do not characterize the relationship of tRNA genes from the same mt genome and, in some cases, analyses overlook possible novel open reading frames (ORFs) when the 13 expected protein-coding genes are already annotated. In this study, we describe the sequence and characterization of the complete mt genome of the silver-lip pearl oyster, Pinctada maxima. The 16,994-bp mt genome contains the same 13 protein-coding genes (PCGs) and two ribosomal RNA genes typical of metazoans. The gene arrangement, however, is completely distinct from that of all other available bivalve mt genomes, and a unique tRNA gene family is observed in this genome. The unique tRNA gene family includes two trnS− AGY and trnQ genes, a trnM isomerism, but it lacks trnS− CUN. We also report the first clear evidence of alloacceptor tRNA gene recruitment (trnP → trnS− AGY) in mollusks. In addition, a novel ORF (orfUR1) expressed at high levels is present in the mt genome of this pearl oyster. This gene contains a conserved domain, “Oxidored_q1_N”, which is a member of Complex I and thus may play an important role in key biological functions. Because orfUR1 has a very similar nucleotide composition and codon bias to that of other genes in this genome, we hypothesize that this gene may have been moved to the mt genome via gene transfer from the nuclear genome at an early stage of speciation of P. maxima, or it may have evolved as a result of gene duplication, followed by rapid sequence divergence. Lastly, a 319-bp region was identified as the possible control region (CR) even though it does not correspond to the longest non-coding region in the genome. Unlike other studies of mt genomes, this study compares the evolutionary patterns of all available bivalve mt tRNA and atp8 genes.  相似文献   

16.
J. B. Walsh 《Genetics》1992,130(4):939-946
A key step in the substitution of a new organelle mutant throughout a population is the generation of germ-line cells homoplasmic for that mutant. Given that each cell typically contains multiple copies of organelles, each of which in turn contains multiple copies of the organelle genome, processes akin to drift and selection in a population are responsible for producing homoplasmic cells. This paper examines the expected substitution rate of new mutants by obtaining the probability that a new mutant is fixed throughout a cell, allowing for arbitrary rates of genome turnover within an organelle and organelle turnover within the cell, as well as (possibly biased) gene conversion and genetic differences in genome and/or organelle replication rates. Analysis is based on a variation of Moran's model for drift in a haploid population. One interesting result is that if the rate of unbiased conversion is sufficiently strong, it creates enough intracellular drift to overcome even strong differences in the replication rates of wild-type and mutant genomes. Thus, organelles with very high conversion rates are more resistant to intracellular selection based on differences in genome replication and/or degradation rates. It is found that the amount of genetic exchange between organelles within the cell greatly influences the probability of fixation. In the absence of exchange, biased gene conversion and/or differences in genome replication rates do not influence the probability of fixation beyond the initial fixation within a single organelle. With exchange, both these processes influence the probability of fixation throughout the entire cell. Generally speaking, exchange between organelles accentuates the effects of directional intracellular forces.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
[目的]动物典型的单一染色体线粒体基因组在甲胁虱属Hoplopleura已裂化成多个线粒体微环染色体.本研究旨在通过测定太平洋甲胁虱Hoplopleura pacifica的线粒体基因组来推测甲胁虱属祖先线粒体核型.[方法]利用Illumina HiSeq X Ten高通量测序技术对太平洋甲胁虱裂化线粒体基因组进行测定...  相似文献   

18.
Gametes of Chlamydomonas reinhardi become activated for cell fusion as the consequence of sexual adhesion between membranes of mating-type plus and minus flagella. By using tannic acid plus en bloc uranyl acetate staining, and by fixing at very early stages in the mating reaction, we have demonstrated the following. (a) Activation of the minus mating structure entails major modifications in the structure of the organelle, causing it to double in size and to concentrate surface coat material, termed fringe, into a central zone. (b) The unactivated plus mating structure is endowed with fringe that moves with the tip of the actin-filled fertilization tubule during activation. Pre-fusion images suggest the occurrence of a specific recognition event between the plus and minus fringes. (c) Gametes carrying the imp-1 mutation fail to form a fringe and are unable to fuse. The imp-1 mutation is linked to the mating-type plus (mt+) locus, suggesting that the gene specifying the synthesis or insertion of fringe is encoded in this sector of the genome. (d) Gametes carrying the imp-11 mutation fail to form both a normal fringe and a normal submembranous density beneath the fringe, and are also unable to fuse. The imp-11 mutation converted a wild-type minus cell into a pseudo-plus strain; a model to explain this conversion proposes that the normal imp-11 gene product represses plus-specific genes concerned with Chlamydomonas gametogenesis.  相似文献   

19.
啮总目包括啮虫目(皮虱和书虱)和虱目(羽虱和吸虱),是农业和医学等领域具有重要经济意义和研究价值的类群,目前已鉴定和描述的物种超过10 000个。啮总目昆虫线粒体基因组的变异性在昆虫各类群中最为剧烈,这些变异包括基因组的结构、基因排序、基因含量和链上分布等诸多方面。本文全面分析和总结了啮总目昆虫裂化线粒体基因组的进化属性,并结合两侧对称动物线粒体基因组的裂化特征重构了线粒体基因组环裂化的过程。引入“线粒体基因组核型”的概念来描述动物线粒体基因组丰富的变异程度。动物线粒体的染色体有减小的趋势,而线粒体基因组的裂化正是体现这种趋势的一种重要策略。同时,总结和探讨了目前具有争议的啮总目主要类群间的系统发育关系。本综述为啮总目昆虫线粒体基因组学、啮总目系统发生关系以及两侧对称动物线粒体基因组进化模式的研究提供一个新的视角。  相似文献   

20.
The Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (mt tyrRS), which is encoded by the nuclear gene cyt-18, functions not only in aminoacylation but also in the splicing of group I introns. Here, we isolated the cognate Podospora anserina mt tyrRS gene, designated yts1, by using the N. crassa cyt-18 gene as a hybridization probe. DNA sequencing of the P. anserina gene revealed an open reading frame (ORF) of 641 amino acids which has significant similarity to other tyrRSs. The yts1 ORF is interrupted by two introns, one near its N terminus at the same position as the single intron in the cyt-18 gene and the other downstream in a region corresponding to the nucleotide-binding fold. The P. anserina yts1+ gene transformed the N. crassa cyt-18-2 mutant at a high frequency and rescued both the splicing and protein synthesis defects. Furthermore, the YTS1 protein synthesized in Escherichia coli was capable of splicing the N. crassa mt large rRNA intron in vitro. Together, these results indicate that YTS1 is a bifunctional protein active in both splicing and protein synthesis. The P. anserina YTS1 and N. crassa CYT-18 proteins share three blocks of amino acids that are not conserved in bacterial or yeast mt tyrRSs which do not function in splicing. One of these blocks corresponds to the idiosyncratic N-terminal domain shown previously to be required for splicing activity of the CYT-18 protein. The other two are located in the putative tRNA-binding domain toward the C terminus of the protein and also appear to be required for splicing. Since the E. coli and yeast mt tyrRSs do not function in splicing, the adaptation of the Neurospora and Podospora spp. mt tyrRSs to function in splicing most likely occurred after the divergence of their common ancestor from yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号