首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vigh  B.  Vigh-Teichmann  I.  Röhlich  P.  Oksche  A. 《Cell and tissue research》1983,233(3):539-548
Opsin-immunoreactive sites of hypothalamic cerebrospinal fluid (CSF)-contacting neurons, pinealocytes and retinal cells were studied in various vertebrates (Carassius auratus, Phoxinus phoxinus, Triturus cristatus, Bombina bombina, Rana esculenta) by means of postembedding immuno-electron microscopy with the use of the protein A-gold labeling method. The retina of the rat served as a general reference tissue for the quality of the immunocytochemical reaction. A strong opsin immunoreaction (rat-antibovine opsin serum) was obtained in the rod-type outer segments of photoreceptors in the retina of all species studied. Cone-type outer segments exhibited only very few antigenic binding sites. In the pineal organ of the goldfish and the frog, outer segments of the photoreceptor cells displayed strong immunoreactivity. No immunoreaction was found in hypothalamic CSF-contacting neurons and Landolt's clubs of nerve cells of the bipolar layer of the retina. The morphological similarity between the ciliated dendritic terminal of the Landolt's club and the intraventricular dendritic ending of the CSF-contacting neurons is emphasized.  相似文献   

2.
The carp retina was examined by NADPH diaphorase histochemistry to determine if the staining pattern of retinal cells was changed depending on the adaptation state of the retina. When dark-adapted for 5 h, ellipsoids of inner segments of both rods and cones and some horizontal cells were heavily stained. Staining was also found in subpopulations of amacrine cells and ganglion cells. In addition, Muller cells were strongly positive for NADPH diaphorase. When light-adapted for 5h, ellipsoids of photoreceptors and ganglion cells were less intensely stained, whereas Muller cells and horizontal cells became negative for NADPH diaphorase. Furthermore, rod ON-center bipolar cells were clearly stained. The difference of staining of amacrine cells between dark- and light-adapted retinas was not significant. The differences in diaphorase-staining pattern between dark- and light-adapted retinas suggest that Muller cells, some horizontal cells and rod ON-center bipolar cells contain inducible nitric oxide synthase,  相似文献   

3.
Homeobox genes play important roles in animal development. We isolated a chick homeobox gene, cbx, and studied its function during embryonic development. The deduced Cbx protein contained 376 amino acid residues. Its homeodomain was related (with 65-71% sequence identity) to that of human Crx, human Cart-1, and chick Alx-4. On searching the human genome sequence, a human homologue was found, which had 78% overall sequence identity and a 100% identical homeodomain. In the developing chick retina, cbx was expressed in a small fraction of post-mitotic cells residing at anatomical locations typical of bipolar cells. These cells were Goalpha(+) and protein kinase C(-), suggesting that they were probably cone bipolar cells. cbx mRNA was also detected outside the retina, particularly in the tectum and Rathke's pouch. Replication-competent retrovirus was used to drive misexpression of cbx and of an Engrailed repression construct. Engrailed-mediated repression of Cbx was embryonic lethal, while misexpression of cbx itself was tolerated. In the retina, misexpression of cbx resulted in fewer PKC(+) bipolar cells. Our data suggest that cbx is essential for embryonic survival and may participate in the development of bipolar, probably cone bipolar, cells in the retina.  相似文献   

4.
视网膜是一薄而半透明的、具有多层结构的神经组织,位于眼球后2/3部的内侧面。向前延伸达睫状体,止于不规则边界。Muller细胞是脊椎动物视网膜内最主要的神经胶质细胞,它贯穿整个视网膜。Muller细胞对于维持神经元的完整性、代谢、内环境稳态以及信号转导等均具有重要的作用。在视网膜病变时,Muller细胞参与整个过程,并且在视网膜的各种疾病中都发现伴有Muller细胞的神经胶质增生反应。Muller细胞同时也调控视网膜病变的整个过程。Muller细胞膜上的神经递质受体、谷氨酸受体、门控电压通道、所合成分泌的营养因子及自的身增殖分化都发生改变。近年来人们对Muller细胞的认识越来越多,研究的方向也从细胞的微观结构、主要功能转变成Muller细胞对不同视网膜病变过程的参与调控。本文对视网膜Muller细胞的形态和生理功能,病理状况下Muller细胞发生的改变作一综述。  相似文献   

5.
Two types of bipolar cell in the Geoclemys reevesii retina were studied quantitatively by means of specific cell labelling with an indoleamine derivative (5,6-dihydroxytryptamine, 5,6-DHT), a nucleic acid stain (4,6-diamidino-2-phenylindole, DAPI) and Lucifer yellow CH. Indoleamine-accumulating (IA) bipolar cells were selectively labelled with 5,6-DHT applied intraocularly. After the cells accumulated 5,6-DHT, the indoleamine fluorescence was photoconverted to diaminobenzidine products to allow observation of morphological details. Close examination of many cells (cell number; n = 120) showed that the IA bipolar cells consist of a single morphological type whose axon collaterals ramify sublaminae 1, 4 and 5 respectively. This terminal branching pattern corresponds to cells that hyperpolarize when their receptive field centres are illuminated (Weiler 1981). The density of IA bipolar cells was highest in the visual streak (4130 cells mm-2) and lowest at the peripheral margin (1970 cells mm-2). By applying a small amount of DAPI to the eye, nuclei located in the most proximal row of the outer nuclear layer were labelled selectively. By using selective intracellular dye injection into DAPI-labelled cells under fluorescence microscope (Tauchi & Masland 1984, 1985), these cells were found to have Landolt's clubs and single descending axons. Dye injections into more than fifty DAPI-labelled somata showed that they belonged exclusively to displaced bipolar cells. These comprised at least two subtypes that differ in the ramification pattern of their axon terminals within the inner plexiform layer: one was monostratified, whereas the other was bistratified. The displaced bipolar cell density was as high as 9400 cells mm-2 in the central retina, falling to 2000 cells mm-2 in the superior margin. In vitro Lucifer labelling revealed that the overall bipolar cell density in the central retina was as high as 39,300 cells mm-2. Both the conventionally located and displaced bipolar cells were included in this population. About 11% of the total bipolar cell population consisted of IA bipolar cells. Assuming that one half of the conventionally located bipolar cells are the centre-hyperpolarizing type, IA bipolar cells represent approximately 28% of the total. As displaced bipolar cells represent almost one quarter of the total bipolar population, the dislocation of their somata stands out morphologically, inviting investigation of possible functional correlates.  相似文献   

6.
On a morphological and ultrastructural level, we studied a thickening which appears on the ascending prolongation of bipolar cells in the chick retina. We first observed this thickening on day 10 of incubation and it remains unchanged throughout the postnatal life of the chick. Its presence seems to be related to the synaptic activity at a dendritic level in certain bipolar cells.  相似文献   

7.
We report here for the first time, in chick retina, Muller cell localization of glutamine synthetase (GS) activity by an immunohistochemical technique, in agreement with previous reports of glial localization of this enzyme in rat brain and retina. Age-dependent changes in the endogenous enzyme activity as well as cortisol-induced changes in GS activity, both in ovo and in vitro, measured biochemically, reflect the changes observed by staining.  相似文献   

8.
Spatial correlation was observed between the localization of laminin-1 at the inner limiting membrane (ILM) and extensive Muller glial process arborization in the same area, as demonstrated by immunolabeling of Muller glial processes and laminin-1 in rat retinae in situ. To test if this spatial correlation is due to a functional relationship, we investigated the impact of laminin-1 on the motility of cultured primary rat and mouse retinal Muller glial cells by statistical analysis of computer-controlled videomicroscopic time-lapse images. We demonstrate that laminin-1 increases motility and path-searching activity of Muller cells in vitro and it also enhances the cells' process formation/withdrawal dynamism. The increase in path-searching activity and cell process dynamism indicates that there is a functional relationship between laminin-1 and Muller glial cells presumably involving signaling towards the cytoskeleton. We hypothesize that laminin-1 is involved in process arborization of Muller cells at the vitread border of the retina resulting in the formation of the functional barrier made up of Muller glial endfeet.  相似文献   

9.
A method has been developed for the preparation of large numbers of glial (Muller) cells from the turtle retina. After proteolytic dissociation of the retina, Muller cells were separated from retinal neurons by velocity sedimentation at unit gravity. Fractions containing >90 percent morphologically identifiable Muller cells were prepared by this procedure. Fractions containing only Muller cells were obtained by drawing selected cells individually into a micropipette under visual observation. Biochemical analyses of isolated Muller cells showed that (a) these cells did not synthesize and accumulate acetylcholine, γ-aminobutyric acid, or catecholamines when incubated with appropriate radioactive precursors; (b) the specific activities of choline acetyltransferase (EC 2.3.1.6), glutamate decarboxylase (EC 4.1.1.15), and tyrosine hydroxylase (EC 1.14.16.2) in these cells were less than 2 percent of those found in the retina; (c) Muller cells, however, contained high activities of transmitter degrading enzymes-acetylcholinesterase (EC 3.1.1.7) and γ-aminobutyrate- transamine (EC 2.6.1.19); and (d) the cells also possessed high levels of two presumably glial-specific-enzymes-glutamine synthetase (EC 6.3.1.2) and carbonic anhydrase (EC 4.2.1.1). These results, together with other findings, suggest that Muller cells are not capable of neurotransmitter syntheses but possess the enzymes necessary for two important roles in the retina: (a) the inactivation of certain transmitters after synaptic transmission by uptake and degradation, and (b) the maintenance of acid-base balance and the provision of a stable microenvironment in the retina by the removal of metabolic products such as carbon dioxide and ammonia.  相似文献   

10.
The recent discovery and characterization of several proteins that purify with endogenous, bound retinoid have given rise to the suggestion that these proteins, which are abundant in retina, perform a role in transport and function of vitamin A. Immunocytochemical techniques were used to localize two retinoid-binding proteins in the retina of four species. Antisera to cellular retinal-binding protein (CRALBP) and an interphotoreceptor retinoid-binding protein (IRBP) were obtained from rabbits immunized with antigens purified from bovine retina. Antibodies from each antiserum reacted with a single component in retinal homogenates and supernatants which corresponded to the molecular weight and charge of the respective antigen (non-SDS and SDS PAGE, electrophoretic transfer to nitrocellulose, immunochemical staining). Immunocytochemistry controls were antibodies from nonimmune serum and antibodies absorbed with purified antigen. Antigens were localized on frozen-sectioned bovine, rat, monkey, and human retina using immunofluorescence and the peroxidase-antiperoxidase technique. Specific staining with anti-IRBP was found in the space that surrounds photoreceptor outer segments, with heaviest labeling in a line corresponding to the retinal pigment epithelium (RPE) apical surface. Cone outer segments were positive. Staining with anti-CRALBP was found in two cell types in all species: the RPE and the Muller glial cell. Within the RPE, labeling filled the cytoplasm and was heaviest apically, with negative nuclei. Labeling of Muller cells produced Golgi- like silhouettes with intense staining of all cytoplasmic compartments. Staining of the external limiting membrane was heavy, with labeled microvilli projecting into the interphotoreceptor space. Localization of IRBP to this space bordered by three cell types (RPE, photoreceptor, and Muller) is consistent with its proposed role in transport of retinoids among cells. Localization of CRALBP in RPE corroborates previous biochemical studies; its presence in the Muller cell suggests that this glial cell may play a hitherto unsuspected role in vitamin A metabolism in retina.  相似文献   

11.
Summary The differentiation of cells and synapses in explants of 9-day-old chick embryo retina has been studied by light and electron microscopy over a period of 35 days in vitro, and samples of retina from the 9-day chick foetus were directly fixed and prepared for study.At the time of explantation the retinae were poorly differentiated and no lamination was apparent. From day 14 onwards, (i) outer and inner nuclear layers (ONL, INL) separated by a layer of neuropil corresponding to the outer plexiform layer (OPL) and (ii) a layer of scattered large ganglion cells separated from the INL by a zone of neuropil resembling the inner plexiform layer (IPL) were apparent, and (iii) a well-differentiated outer limiting membrane was established close to the surface of the explants. In the oldest cultures some development of photoreceptor outer segments occurred but a distinct optic nerve fibre layer did not form.Although cell identification presented problems even in the oldest cultures, the major retinal cell types described in vivo could be identified. Photoreceptor cells developed pedicles in the OPL which became filled with synaptic vesicles and synaptic ribbons and established ribbon synapses (including triads) with and were commonly invaginated by processes from horizontal and bipolar cells. Processes of bipolar cells in the IPL formed simple and dyad synapses. At least two types of presynaptic amacrine cells were also identified in the INL, one of which contained large numbers of dense-core vesicles. The ganglion cells, though sparse, were large and well differentiated.These findings show that all the major neuronal types of the retina are capable of developing and differentiating in vitro, lagging behind the time-table of development and differentiation in vivo by approximately 7 days, but resulting in a histotypically organised retina with synaptic neuropil showing many similarities to the corresponding neuropil in vivo.  相似文献   

12.
A novel retinoid cycle has recently been identified in the cone-dominated chicken retina, and this cone cycle accumulates 11-cis-retinyl esters upon light adaptation. The purpose of this study is to investigate how 11-cis-retinyl esters are formed in the retina. Primary cultures of chicken Muller cells and cell membrane were incubated with all-trans- or 11-cis-retinol to study retinyl ester synthesis. In Muller cells, esterification of 11-cis-retinol was four times greater than esterification of all-trans-retinol. In the presence of palmitoyl-CoA and CRALBP, Muller cell membranes synthesized 11-cis-retinyl ester from 11-cis-retinol at a rate which was 20-fold higher than that of all-trans-retinyl ester. In the absence of CRALBP, 11-cis-retinyl ester synthesis was greatly reduced (by 7-fold). In the absence of palmitoyl-CoA, retinyl ester synthesis was not observed. Muller cell membranes incubated with radiolabeled palmitoyl-CoA resulted in the transfer of the labeled acyl group to retinol. This acyl transfer was greatly reduced in the presence of progesterone, a known ARAT inhibitor. 11-cis-ARAT activity remained unchanged when assayed in the presence of all-trans-retinol, suggesting a distinct catalytic activity from that of all-trans-ARAT. Apparent kinetic rates for 11-cis-ARAT were 0.135 nmol min(-)(1) mg(-)(1) (V(max)) and 11.25 microM (K(M)) and for all-trans-ARAT were 0.0065 nmol min(-)(1) mg(-)(1) (V(max)) and 28.88 microM (K(M)). Our data indicate that Muller cells in the chicken retina possess 11-cis-ARAT activity, thus providing an explanation for the accumulation of 11-cis-retinyl esters in the cone cycle.  相似文献   

13.
Target cells of vitamin D in the vertebrate retina   总被引:1,自引:0,他引:1  
Using PAP technique, cellular localization of vitamin D-dependent calcium-binding protein (D-CaBP) was investigated in vertebrate retina with monospecific antisera against chick duodenal D-CaBP. In the chick retina, the receptor cells were positive. In the inner nuclear layer, horizontal cells and some bipolar cells were also positive. Some amacrine cells as well as different levels of the inner plexiform layer were also positive for D-CaBP. A few interspersed ganglion cells were positive but their axons forming the optic tract were negative. Müller's cells were negative. In 1-day-old chicks and 4-week-old rachitic chicks there was paucity and absence, respectively, of D-CaBP staining in horizontal cells. In the mouse, rat, and rabbit the receptors had only trace amounts of reaction product in their outer segment and pedicle. Horizontal cells were densely positive throughout their cellular body and processes. Some amacrine cells in the inner nuclear layer were positive. In the mouse and rat three horizontal levels of the outer plexiform layer were very prominent because of their dense staining for D-CaBP. Many ganglion cells were also positive along with their axons forming the optic nerve. In the rabbit, no positive layers were seen in the inner plexiform layer, and ganglion cells with their fibers were negative. In the frog retina there were smaller amounts of D-CaBP in the receptor cells and horizontal cells than that of the chick retina. Also, the fibers of the ganglionic cells were positive for D-CaBP. In all species studied, some amacrine cells were stained for D-CaBP. Because of its possible roles in membrane calcium transport and intracellular Ca++ regulation, it has perhaps similar functions in these positive cells. The synthesis of D-CaBP is dependent upon vitamin D. These positive cells are thus target cells of vitamin D.  相似文献   

14.
The visual cells in the retina of the freshwater catfish, Heteropneustes fossilis comprise rods, long single cones, short single cones and Landolt's clubs.  相似文献   

15.
Pale and dark bipolar cells in the chicken retina   总被引:1,自引:0,他引:1  
Ultrastructurally, two different bipolar cell types can be distinguished in the retina of the chick embryo: one pale or electron-lucent and the other dark or electron-dense. The different electron density was seen over the whole cell, from its enclave in the outer limiting membrane to its termination in the inner plexiform layer. These observations prompted us to study the content and cytoplasmic variations of both cell types. The pale bipolar cell has a higher vacuole, vesicle and endoplasmic reticulum content and a lower number of microtubules and glycogen than the dark bipolar cell. The presence of these two cell types is probably due to a characteristic physiologic state, and the difference between the pale and dark bipolar cells can be attributed to the diverse number of gap unions which they establish with A II amacrine cells.  相似文献   

16.
A monoclonal antibody, Mab 8A2, that recognizes a novel set of gangliosides was produced by immunizing a mouse with Embryonic Day 14 chick optic nerve. Immunohistochemical studies of the developing chick retina revealed a complex pattern of Mab 8A2 immunoreactivity. Initially, staining is concentrated in the optic fiber layer in the central retina. Later in development, the most intense staining is seen at the periphery of the retina and 8A2 immunoreactivity appears in other retina layers. In the adult retina, 8A2 immunoreactivity is lost from the optic fiber layer but persists in the inner plexiform layer, inner nuclear layer, and outer plexiform layer. Cell culture experiments showed intense staining of neurites from retinal ganglion cells but no staining of Muller cells. Biochemical characterization of the epitope recognized by Mab 8A2 suggests that it includes a 9-O-acetyl group that is present on five different gangliosides. The 8A2 immunoreactive gangliosides are distinct from and have slower mobilities on thin-layer chromatographs than those recognized by Mab D1.1 which recognizes 9-O-acetyl GD3.  相似文献   

17.
The fine structure of the retinal photoreceptors has been studied by light and electron microscopy in the southern fiddler ray or guitarfish (Trygonorhina fasciata). The duplex retina of this species contains only rods and single cones in a ratio of about 40:1. No multiple receptors (double cones), no repeating pattern or mosaic of photoreceptors and no retinomotor movements of these photoreceptors were noted. The rods are cylindrical cells with inner and outer segments of the same diameter. Cones are shorter, stouter cells with a conical outer segment and a wider inner segment. Rod outer segment discs display several irregular incisures to give a scalloped outline to the discs while cone outer segment discs have only a single incisure. In all photoreceptors a non-motile cilium joins the inner and outer segments. The inner segment is the synthetic centre of photoreceptors and in this compartment is located an accumulation of mitochondria (the ellipsoid), profiles of both rough and smooth endoplasmic reticulum, prominent Golgi zones and frequent autophagic vacuoles. The nuclei of rods and cones have much the same chromatin pattern but cone nuclei are invariably located against or particularly through the external limiting membrane (ELM). Numerous Landolt's clubs which are ciliated dendrites of bipolar cells as well as Müller cell processes project through the ELM, which is composed of a series of zonulae adherentes between these cells and the photoreceptors. The synaptic region of both rods (spherules) and cones (pedicles) display both invaginated (ribbon) synapses and superficial (conventional) synapses with cones showing more sites than the rods.  相似文献   

18.
Cell localization of 23 kDa- and 35 kDa-crystallins in the retina of adult common frogs Rana temporaria L. was studied using indirect immunofluorescence. Intense specific fluorescence of both crystallins was observed all over the retina, in both periphery and central area. It was localized in elongated radially oriented cells, whose bodies were located in the inner nuclear layer. These cells gave many fluorescing processes in the same layer and main processes in the outer nuclear and ganglion layers, one in each. The processes formed a strong network of fibers around the photoreceptor and ganglion cells. Intense fluorescence was also observed in the layer of nerve fibers and adjoining inner limiting membrane. The distribution and morphology of crystalline-containing cells mostly coincides with what is known for the Muller cells of vertebrate eye. The identity of the cells we described and Muller cells was also confirmed using the antiserum to glial fibrillary acidic protein.  相似文献   

19.
In order to study cell differentiation and morphogenesis of neural retina, ultracytochemical examination for acetylcholine esterase (AChE) was carried out on neural retinal cells from 6-day-old chick embryos cultured in monolayer for 20 days. AChE is a suitable marker for identifying cell specificity and structure of cultured neural retinal cells, because its specific localization in the intact chick neural retina has been established. After about 2 weeks of culturing a number of cell aggregates formed on the monolayer sheet of glial cells, in which cell bodies were generally located on the periphery regions while their cellular processes were in the center, forming neuropil structures. Among such peripherally located cells presumptive ganglion, amacrine, bipolar, and photoreceptor cells could be distinguished. In the neuropil structures, some cellular processes had typical ribbon synapses indicating that these structures correspond to the plexiform layers of the retina. We could also classify the neuropils into two types of both from the AChE activity and from the structure of the nerve terminals. These findings indicate that our cell culture system can be used for the study of cell differentiation and histogenesis of retinal cells.  相似文献   

20.
Membrane currents in retinal bipolar cells of the axolotl   总被引:4,自引:1,他引:4       下载免费PDF全文
By whole-cell patch-clamping bipolar cells isolated from enzymatically dissociated retinae, we have studied the nonsynaptic ionic currents that may play a role in shaping the bipolar cell light response and in determining the level of voltage noise in these cells. Between -30 and -70 mV, the membrane current of isolated bipolar cells is time independent, and the input resistance is 1-2 G omega. Depolarization past -30 mV activates an outward current (in less than 100 ms), which then inactivates slowly (approximately 1 s). Inactivation of this current is removed by hyperpolarization over the range -20 to -80 mV. This current is carried largely by K ions. It is not activated by internal Ca2+. The membrane current of isolated bipolar cells is noisy, and the variance of this noise has a minimum between -40 and -60 mV. At its minimum, the standard deviation of the voltage noise produced by nonsynaptic membrane currents is at least 100 microV. The membrane currents of depolarizing bipolar cells in slices of retina were investigated by whole-cell patch-clamping. Their membrane properties were similar to those of isolated bipolar cells, but with a larger membrane capacitance and a smaller input resistance. Their membrane current noise also showed a minimum near -40 to -60 mV. The time-dependent potassium current in axolotl bipolar cells is not significantly activated in the physiological potential range and can therefore play little role in shaping the bipolar cells' voltage response to light. Differences in the waveform of the light response of bipolar cells and photoreceptors must be ascribed to shaping by the synapses between these cells. The noise minimum in the bipolar membrane current is near the dark potential of these cells, and this may be advantageous for the detection of weak signals by the bipolar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号