首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cajal bodies (CBs) are subnuclear domains implicated in small nuclear ribonucleoprotein (snRNP) biogenesis. In most cell types, CBs coincide with nuclear gems, which contain the survival of motor neurons (SMN) complex, an essential snRNP assembly factor. Here, we analyze the exchange kinetics of multiple components of CBs and gems in living cells using photobleaching microscopy. We demonstrate differences in dissociation kinetics of CB constituents and relate them to their functions. Coilin and SMN complex members exhibit relatively long CB residence times, whereas components of snRNPs, small nucleolar RNPs, and factors shared with the nucleolus have significantly shorter residence times. Comparison of the dissociation kinetics of these shared proteins from either the nucleolus or the CB suggests the existence of compartment-specific retention mechanisms. The dynamic properties of several CB components do not depend on their interaction with coilin because their dissociation kinetics are unaltered in residual nuclear bodies of coilin knockout cells. Photobleaching and fluorescence resonance energy transfer experiments demonstrate that coilin and SMN can interact within CBs, but their interaction is not the major determinant of their residence times. These results suggest that CBs and gems are kinetically independent structures.  相似文献   

2.

Background  

The Cajal body (CB) is a nuclear suborganelle involved in the biogenesis of small nuclear ribonucleoproteins (snRNPs), which are vital for pre-mRNA splicing. Newly imported Sm-class snRNPs traffic through CBs, where the snRNA component of the snRNP is modified, and then target to other nuclear domains such as speckles and perichromatin fibrils. It is not known how nascent snRNPs localize to the CB and are released from this structure after modification. The marker protein for CBs, coilin, may play a role in snRNP biogenesis given that it can interact with snRNPs and SMN, the protein mutated in Spinal Muscular Atrophy. Loss of coilin function in mice leads to significant viability and fertility problems and altered CB formation.  相似文献   

3.
4.
Cajal bodies (CBs) are nuclear suborganelles involved in biogenesis of small RNAs. Twin structures, called gems, contain high concentrations of the survival motor neurons (SMN) protein complex. CBs and gems often colocalize, and communication between these subdomains is mediated by coilin, the CB marker. Coilin contains symmetrical dimethylarginines that modulate its affinity for SMN, and, thus, localization of SMN complexes to CBs. Inhibition of methylation or mutation of the coilin RG box dramatically decreases binding of coilin to SMN, resulting in gem formation. Coilin is hypomethylated in cells that display gems, but not in those that primarily contain CBs. Likewise, extracts prepared from cells that display gems are less efficient in methylating coilin and Sm constructs in vitro. These results demonstrate that alterations in protein methylation status can affect nuclear organization.  相似文献   

5.
Coilin is the signature protein of the Cajal body (CB), a nuclear suborganelle involved in the biogenesis of small nuclear ribonucleoproteins (snRNPs). Newly imported Sm-class snRNPs are thought to traffic through CBs before proceeding to their final nuclear destinations. Loss of coilin function in mice leads to significant viability and fertility problems. Coilin interacts directly with the spinal muscular atrophy (SMA) protein via dimethylarginine residues in its C-terminal domain. Although coilin hypomethylation results in delocalization of survival of motor neurons (SMN) from CBs, high concentrations of snRNPs remain within these structures. Thus, CBs appear to be involved in snRNP maturation, but factors that tether snRNPs to CBs have not been described. In this report, we demonstrate that the coilin C-terminal domain binds directly to various Sm and Lsm proteins via their Sm motifs. We show that the region of coilin responsible for this binding activity is separable from that which binds to SMN. Interestingly, U2, U4, U5, and U6 snRNPs interact with the coilin C-terminal domain in a glutathione S-transferase (GST)-pulldown assay, whereas U1 and U7 snRNPs do not. Thus, the ability to interact with free Sm (and Lsm) proteins as well as with intact snRNPs, indicates that coilin and CBs may facilitate the modification of newly formed snRNPs, the regeneration of ‘mature’ snRNPs, or the reclamation of unassembled snRNP components.  相似文献   

6.
7.
Cajal bodies (CBs) have been implicated in the nuclear phase of the biogenesis of spliceosomal U small nuclear ribonucleoproteins (U snRNPs). Here, we have investigated the distribution of the CB marker protein coilin, U snRNPs, and proteins present in C/D box small nucleolar (sno)RNPs in cells depleted of hTGS1, SMN, or PHAX. Knockdown of any of these three proteins by RNAi interferes with U snRNP maturation before the reentry of U snRNA Sm cores into the nucleus. Strikingly, CBs are lost in the absence of hTGS1, SMN, or PHAX and coilin is dispersed in the nucleoplasm into numerous small foci. This indicates that the integrity of canonical CBs is dependent on ongoing U snRNP biogenesis. Spliceosomal U snRNPs show no detectable concentration in nuclear foci and do not colocalize with coilin in cells lacking hTGS1, SMN, or PHAX. In contrast, C/D box snoRNP components concentrate into nuclear foci that partially colocalize with coilin after inhibition of U snRNP maturation. We demonstrate by siRNA-mediated depletion that coilin is required for the condensation of U snRNPs, but not C/D box snoRNP components, into nucleoplasmic foci, and also for merging these factors into canonical CBs. Altogether, our data suggest that CBs have a modular structure with distinct domains for spliceosomal U snRNPs and snoRNPs.  相似文献   

8.
Cajal bodies (CBs) are subnuclear domains that participate in spliceosomal small nuclear ribonucleoprotein (snRNP) biogenesis and play a part in the assembly of the spliceosomal complex. The CB marker protein, coilin, interacts with survival of motor neuron (SMN) and Sm proteins. Several coilin phosphoresidues have been identified by mass spectrometric analysis. Phosphorylation of coilin affects its self-interaction and localization in the nucleus. We hypothesize that coilin phosphorylation also impacts its binding to SMN and Sm proteins. In vitro binding studies with a C-terminal fragment of coilin and corresponding phosphomimics show that SMN binds preferentially to dephosphorylated analogs and that SmB′ binds preferentially to phosphomimetic constructs. Bacterially expressed full-length coilin binds more SMN and SmB′ than does the C-terminal fragment. Co-immunoprecipitation and phosphatase experiments show that SMN also binds dephosphorylated coilin in vivo. These data show that phosphorylation of coilin influences interaction with its target proteins and, thus, may be significant in managing the flow of snRNPs through the CB.  相似文献   

9.
10.
SMN, the affected protein in spinal muscular atrophy (SMA), is a cytoplasmic protein that also occurs in nuclear structures called "gems" and is involved in snRNP maturation. Coilin-p80 is a marker protein for nuclear Cajal bodies (coiled bodies; CBs) which are also involved in snRNP maturation, storage or transport. We now show that gems and CBs are present in all fetal tissues, even those that lack gems/CBs in the adult. Most gems and CBs occur as separate nuclear structures in fetal tissues, but their colocalization increases with fetal age and is almost complete in the adult. In adult tissues, up to half of all gems/CBs are inside the nucleolus, whereas in cultured cells they are almost exclusively nucleoplasmic. The nucleolar SMN is often more diffusely distributed, compared with nucleoplasmic gems. Up to 30% of cells in fetal tissues have SMN distributed throughout the nucleolus, instead of forming gems in the nucleoplasm. The results suggest a function for gems distinct from Cajal bodies in fetal nuclei and a nucleolar function for SMN. Spinal cord, the affected tissue in SMA, behaves differently in several respects. In both fetal and adult motor neurons, many gems/CBs occur as larger bodies closely associated with the nucleolar perimeter. Uniquely in motor neurons, gems/CBs are more numerous in adult than in fetal stages and colocalization of gems and CBs occurs earlier in development. These unusual features of motor neurons may relate to their special sensitivity to reduced SMN levels in SMA patients.  相似文献   

11.
The spliceosomal snRNAs U1, U2, U4, and U5 are synthesized in the nucleus, exported to the cytoplasm to assemble with Sm proteins, and reimported to the nucleus as ribonucleoprotein particles. Recently, two novel proteins involved in biogenesis of small nuclear ribonucleoproteins (snRNPs) were identified, the Spinal muscular atrophy disease gene product (SMN) and its associated protein SIP1. It was previously reported that in HeLa cells, SMN and SIP1 form discrete foci located next to Cajal (coiled) bodies, the so-called "gemini of coiled bodies" or "gems." An intriguing feature of gems is that they do not appear to contain snRNPs. Here we show that gems are present in a variable but small proportion of rapidly proliferating cells in culture. In the vast majority of cultured cells and in all primary neurons analyzed, SMN and SIP1 colocalize precisely with snRNPs in the Cajal body. The presence of SMN and SIP1 in Cajal bodies is confirmed by immunoelectron microscopy and by microinjection of antibodies that interfere with the integrity of the structure. The association of SMN with snRNPs and coilin persists during cell division, but at the end of mitosis there is a lag period between assembly of new Cajal bodies in the nucleus and detection of SMN in these structures, suggesting that SMN is targeted to preformed Cajal bodies. Finally, treatment of cells with leptomycin B (a drug that blocks export of U snRNAs to the cytoplasm and consequently import of new snRNPs into the nucleus) is shown to deplete snRNPs (but not SMN or SIP1) from the Cajal body. This suggests that snRNPs flow through the Cajal body during their biogenesis pathway.  相似文献   

12.
13.

Background  

Cajal bodies (CBs) are nuclear suborganelles that play a role in the biogenesis of small nuclear ribonucleoproteins (snRNPs), which are crucial for pre-mRNA splicing. Upon nuclear reentry, Sm-class snRNPs localize first to the CB, where the snRNA moiety of the snRNP is modified. It is not clear how snRNPs target to the CB and are released from this structure after their modification. Coilin, the CB marker protein, may participate in snRNP biogenesis given that it can interact with snRNPs and SMN. SMN is crucial for snRNP assembly and is the protein mutated in the neurodegenerative disease Spinal Muscular Atrophy. Coilin knockout mice display significant viability problems and altered CB formation. Thus characterization of the CB and its associated proteins will give insight into snRNP biogenesis and clarify the dynamic organization of the nucleus.  相似文献   

14.
15.
Coiled bodies (CBs) are nuclear organelles in which splicing snRNPs concentrate. While CBs are sometimes observed in association with the nucleolar periphery, they are shown not to contain 5S or 28S rRNA or the U3 snoRNA. This argues against CBs playing a role in rRNA maturation or transport as previously suggested. We present evidence here that CBs are kinetic structures and demonstrate that the formation of snRNP-containing CBs is regulated in interphase and mitosis. The coiled body antigen, p80 coilin, was present in all cell types studied, even when CBs were not prominent. Striking changes in the formation of CBs could be induced by changes in cellular growth temperature without a concomitant change in the intracellular p80 coilin level. During mitosis, CBs disassemble, coinciding with a mitotic-specific phosphorylation of p80 coilin. Coilin is shown to be a phosphoprotein that is phosphorylated on at least two additional sites during mitosis. CBs reform in daughter nuclei after a lag period during which they are not detected. CBs are thus, dynamic nuclear organelles and we propose that cycling interactions of splicing snRNPs with CBs may be important for their participation in the processing or transport of pre-mRNA in mammalian cells.  相似文献   

16.
The spinal muscular atrophy protein, SMN, is a cytoplasmic protein that is also found in distinct nuclear structures called "gems." Gems are closely associated with nuclear coiled bodies and both may have a direct role in snRNP maturation and pre-RNA splicing. There has been some controversy over whether gems and coiled bodies colocalize or form adjacent/independent structures in HeLa and other cultured cells. Using a new panel of antibodies against SMN and antibodies against coilin-p80, a systematic and quantitative study of adult differentiated tissues has shown that gems always colocalize with coiled bodies. In some tissues, a small proportion of coiled bodies (<10%) had no SMN, but independent or adjacent gems were not found. The most striking observation, however, was that many cell types appear to have neither gems nor coiled bodies (e.g., cardiac and smooth muscle, blood vessels, stomach, and spleen) and this expression pattern is conserved across human, rabbit, and pig species. This shows that assembly of distinct nuclear bodies is not essential for RNA splicing and supports the view that they may be storage sites for reserves of essential proteins and snRNPs. Overexpression of SMN in COS-7 cells produced supernumerary nuclear bodies, most of which also contained coilin-p80, confirming the close relationship between gems and coiled bodies. However, when SMN is reduced to very low levels in type I SMA fibroblasts, coiled bodies are still formed. Overall, the data suggest that gem/coiled body formation is not determined by high cytoplasmic SMN concentrations or high metabolic activity alone and that a differentiation-specific factor may control their formation.  相似文献   

17.
18.
Small nuclear ribonucleoproteins (snRNPs), which are required for pre-mRNA splicing, contain extensively modified snRNA. Small Cajal body-specific ribonucleoproteins (scaRNPs) mediate these modifications. It is unknown how the box C/D class of scaRNPs localizes to Cajal Bodies (CBs). The processing of box C/D scaRNA is also unclear. Here, we explore the processing of box C/D scaRNA 2 and 9 by coilin. We also broaden our investigation to include WRAP53 and SMN, which accumulate in CBs, play a role in RNP biogenesis and associate with coilin. These studies demonstrate that the processing of an ectopically expressed scaRNA2 is altered upon the reduction of coilin, WRAP53 or SMN, but the extent and direction of this change varies depending on the protein reduced. We also show that box C/D scaRNP activity is reduced in a cell line derived from coilin knockout mice. Collectively, the findings presented here further implicate coilin as being a direct participant in the formation of box C/D scaRNPs, and demonstrate that WRAP53 and SMN may also play a role, but the activity of these proteins is divergent to coilin.  相似文献   

19.
20.
The survival of motor neurons (SMN) gene is the disease gene of spinal muscular atrophy (SMA), a common motor neuron degenerative disease. The SMN protein is part of a complex containing several proteins, of which one, SIP1 (SMN interacting protein 1), has been characterized so far. The SMN complex is found in both the cytoplasm and in the nucleus, where it is concentrated in bodies called gems. In the cytoplasm, SMN and SIP1 interact with the Sm core proteins of spliceosomal small nuclear ribonucleoproteins (snRNPs), and they play a critical role in snRNP assembly. In the nucleus, SMN is required for pre-mRNA splicing, likely by serving in the regeneration of snRNPs. Here, we report the identification of another component of the SMN complex, a novel DEAD box putative RNA helicase, named Gemin3. Gemin3 interacts directly with SMN, as well as with SmB, SmD2, and SmD3. Immunolocalization studies using mAbs to Gemin3 show that it colocalizes with SMN in gems. Gemin3 binds SMN via its unique COOH-terminal domain, and SMN mutations found in some SMA patients strongly reduce this interaction. The presence of a DEAD box motif in Gemin3 suggests that it may provide the catalytic activity that plays a critical role in the function of the SMN complex on RNPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号