首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The activities of pure and mixed cultures of Desulfovibrio vulgaris and Methanosarcina barkeri in the exponential growth phase were monitored by measuring changes in dissolved-gas concentration by membrane-inlet mass spectrometry. M. barkeri grown under H2-CO2 or methanol produced limited amounts of methane and practically no hydrogen from either substrate. The addition of CO resulted in a transient H2 production concomitant with CO consumption. Hydrogen was then taken up, and CH4 production increased. All these events were suppressed by KCN, which inhibited carbon monoxide dehydrogenase activity. Therefore, with both substrates, H2 appeared to be an intermediate in CO reduction to CH4. The cells grown on H2-CO2 consumed 4 mol of CO and produced 1 mol of CH4. Methanol-grown cells reduced CH3OH with H2 resulting from carbon monoxide dehydrogenase activity, and the ratio was then 1 mol of CH4 to 1 mol of CO. Only 12CH4 and no 13CH4 was obtained from 13CO, indicating that CO could not be the direct precursor of CH4. In mixed cultures of D. vulgaris and M. barkeri on lactate, an initial burst of H2 was observed, followed by a lower level of production, whereas methane synthesis was linear with time. Addition of CO to the mixed culture also resulted in transient extra H2 production but had no inhibitory effect upon CH4 formation, even when the sulfate reducer was D. vulgaris Hildenborough, whose periplasmic iron hydrogenase is very sensitive to CO. The hydrogen transfer is therefore probably mediated by a less CO-sensitive nickel-iron hydrogenase from either of both species.  相似文献   

2.
When grown in the absence of added sulfate, cocultures of Desulfovibrio desulfuricans or Desulfovibrio vulgaris with Methanobrevibacter smithii (Methanobacterium ruminantium), which uses H(2) and CO(2) for methanogenesis, degraded lactate, with the production of acetate and CH(4). When D. desulfuricans or D. vulgaris was grown in the absence of added sulfate in coculture with Methanosarcina barkeri (type strain), which uses both H(2)-CO(2) and acetate for methanogenesis, lactate was stoichiometrically degraded to CH(4) and presumably to CO(2). During the first 12 days of incubation of the D. desulfuricans-M. barkeri coculture, lactate was completely degraded, with almost stoichiometric production of acetate and CH(4). Later, acetate was degraded to CH(4) and presumably to CO(2). In experiments in which 20 mM acetate and 0 to 20 mM lactate were added to D. desulfuricans-M. barkeri cocultures, no detectable degradation of acetate occurred until the lactate was catabolized. The ultimate rate of acetate utilization for methanogenesis was greater for those cocultures receiving the highest levels of lactate. A small amount of H(2) was detected in cocultures which contained D. desulfuricans and M. barkeri until after all lactate was degraded. The addition of H(2), but not of lactate, to the growth medium inhibited acetate degradation by pure cultures of M. barkeri. Pure cultures of M. barkeri produced CH(4) from acetate at a rate equivalent to that observed for cocultures containing M. barkeri. Inocula of M. barkeri grown with H(2)-CO(2) as the methanogenic substrate produced CH(4) from acetate at a rate equivalent to that observed for acetate-grown inocula when grown in a rumen fluid-vitamin-based medium but not when grown in a yeast extract-based medium. The results suggest that H(2) produced by the Desulfovibrio species during growth with lactate inhibited acetate degradation by M. barkeri.  相似文献   

3.
We compared the metabolism of methanol and acetate when Methanosarcina barkeri was grown in the presence and absence of Desulfovibrio vulgaris. The sulfate reducer was not able to utilize methanol or acetate as the electron donor for energy metabolism in pure culture, but was able to grow in coculture. Pure cultures of M. barkeri produced up to 10 mumol of H(2) per liter in the culture headspace during growth on acetate or methanol. In coculture with D. vulgaris, the gaseous H(2) concentration was 相似文献   

4.
Sulfate-reducing bacteria, like Desulfovibrio vulgaris Hildenborough, use the reduction of sulfate as a sink for electrons liberated in oxidation reactions of organic substrates. The rate of the latter exceeds that of sulfate reduction at the onset of growth, causing a temporary accumulation of hydrogen and other fermentation products (the hydrogen or fermentation burst). In addition to hydrogen, D. vulgaris was found to produce significant amounts of carbon monoxide during the fermentation burst. With excess sulfate, the hyd mutant (lacking periplasmic Fe-only hydrogenase) and hmc mutant (lacking the membrane-bound, electron-transporting Hmc complex) strains produced increased amounts of hydrogen from lactate and formate compared to wild-type D. vulgaris during the fermentation burst. Both hydrogen and CO were produced from pyruvate, with the hyd mutant producing the largest transient amounts of CO. When grown with lactate and excess sulfate, the hyd mutant also exhibited a temporary pause in sulfate reduction at the start of stationary phase, resulting in production of 600 ppm of headspace hydrogen and 6,000 ppm of CO, which disappeared when sulfate reduction resumed. Cultures with an excess of the organic electron donor showed production of large amounts of hydrogen, but no CO, from lactate. Pyruvate fermentation was diverse, with the hmc mutant producing 75,000 ppm of hydrogen, the hyd mutant producing 4,000 ppm of CO, and the wild-type strain producing no significant amount of either as a fermentation end product. The wild type was most active in transient production of an organic acid intermediate, tentatively identified as fumarate, indicating increased formation of organic fermentation end products in the wild-type strain. These results suggest that alternative routes for pyruvate fermentation resulting in production of hydrogen or CO exist in D. vulgaris. The CO produced can be reoxidized through a CO dehydrogenase, the presence of which is indicated in the genome sequence.  相似文献   

5.
Influence of corrinoid antagonists on methanogen metabolism.   总被引:22,自引:11,他引:11       下载免费PDF全文
Iodopropane inhibited cell growth and methane production when Methanobacterium thermoautotrophicum, Methanobacterium formicicum, and Methanosarcina barkeri were cultured on H2-CO2. Iodopropane (40 microM) inhibited methanogenesis (30%) and growth (80%) when M. barkeri was cultured mixotrophically on H2-CO2-methanol. The addition of acetate to the medium prevented the observed iodopropane-dependent inhibition of growth. The concentrations of iodopropane that caused 50% inhibition of growth of M. barkeri on either H2-CO2, H2-CO2-methanol, methanol, and acetate were 112 +/- 6, 24 +/- 2, 63 +/- 11, and 4 +/- 1 microM, respectively. Acetate prevented the iodopropane-dependent inhibition of one-carbon metabolism. Cultivation of M. barkeri on H2-CO2-methanol in bright light also inhibited growth and methanogenesis to a greater extent in the absence than in the presence of acetate in the medium. Acetate was the only organic compound examined that prevented iodopropane-dependent inhibition of one-carbon metabolism in M. barkeri. The effect of iodopropane and acetate on the metabolic fates of methanol and carbon dioxide was determined with 14C tracers when M. barkeri was grown mixotrophically on H2-CO2-methanol. The addition of iodopropane decreased the contribution of methanol to methane and cell carbon while increasing the contribution of CO2 to cell carbon. Regardless of iodopropane, acetate addition decreased the contribution of methanol and CO2 to cell carbon without decreasing their contribution to methane. The corrinoid antagonists, light and iodopropane, appeared most specific for methanogen metabolic reactions involved in acetate synthesis from one-carbon compounds and acetate catabolism.  相似文献   

6.
Methanococcus thermolithotrophicus can use either H2 or formate as the electron donor for methanogenesis from CO2. Resuspended-cell experiments revealed that the ability to use H2 as the source of electrons for methanogenesis was constitutive; cells grown on formate or H2-CO2 were equally capable of H2-CO2 methanogenesis. The ability to metabolize formate at high rates was observed only in cells previously grown on formate. Two such strains were distinguished: strain F and strain HF. Strain F was repeatedly grown exclusively on formate for over 3 years; this strain showed a constitutive capacity to metabolize formate to methane, even after subsequent repeated transfers to medium containing only H2-CO2. Strain HF could only metabolize formate to methane when grown in the presence of formate with no H2 present; this strain was recently derived from another strain (H) that had been exclusively grown on H2-CO2 and which upon initial transfer to formate medium could only metabolize formate to methane at a very slow rate. Initial adaptation of strain H to growth on formate was preceded by a long lag. The specific activities of hydrogenase and formate dehydrogenase in cell extracts derived from these different strains confirmed these findings. Similar levels of hydrogenase were observed in all strains, independent of the presence of H2 in the growth medium medium. High levels of formate dehydrogenase were also constitutive in strain F. Only low formate dehydrogenase activities were observed in strain H. High levels of formate dehydrogenase were observed in strain HF only when these cells were grown with formate in the absence of H2. In all strains the two- to threefold fluctuations of both hydrogenase and formate dehydrogenase cell-free activities were observed during growth, with peak activities reached in the middle of the exponential phase.  相似文献   

7.
The pathway of acetate catabolism in Methanosarcina barkeri strain MS was studied by using a recently developed assay for methanogenesis from acetate by soluble enzymes in cell extracts. Extracts incubated with [2-14C]acetate, hydrogen, and ATP formed 14CH4 and [14C]methyl coenzyme M as products. The apparent Km for acetate conversion to methane was 5 mM. In the presence of excess acetate, both the rate and duration of methane production was dependent on ATP. Acetyl phosphate replaced the cell extract methanogenic requirement for both acetate and ATP (the Km for ATP was 2 mM). Low concentrations of bromoethanesulfonic acid and cyanide, inhibitors of methylreductase and carbon monoxide dehydrogenase, respectively, greatly reduced the rate of methanogenesis. Precipitation of CO dehydrogenase in cell extracts by antibodies raised to 95% purified enzyme inhibited both CO dehydrogenase and acetate-to-methane conversion activity. The data are consistent with a model of acetate catabolism in which methylreductase, methyl coenzyme M, CO dehydrogenase, and acetate-activating enzymes are components. These results are discussed in relation to acetate uptake and rate-limiting transformation mechanisms in methane formation.  相似文献   

8.
Methanococcus thermolithotrophicus is a methanogenic archaebacterium that can use either H2 or formate as its source of electrons for reduction of CO2 to methane. Growth and suspended-whole-cell experiments show that H2 plus CO2 methanogenesis was constitutive, while formate methanogenesis required adaptation time; selenium was necessary for formate utilization. Cells grown on formate had 20 to 100 times higher methanogenesis rates on formate than cells grown on H2-CO2 and transferred into formate medium. Enzyme assays with crude extracts and with F420 or methyl viologen as the electron acceptor revealed that hydrogenase was constitutive, while formate dehydrogenase was regulated. Cells grown on formate had 10 to 70 times higher formate dehydrogenase activity than cells grown on H2-CO2 with Se present in the medium; when no Se was added to H2-CO2 cultures, even lower activities were observed. Adaptation to and growth on formate were pH dependent, with an optimal pH for both about one pH unit above that optimal for H2-CO2 (pH 5.8 to 6.5). When cells were grown on H2-CO2 in the presence of formate, formate (greater than or equal to 50 mM) inhibited both growth and methanogenesis at pH 5.8 to 6.2, but not at pH greater than 6.6. Both acetate and propionate produced similar inhibition. Formate inhibition was also observed in Methanospirillum hungatei.  相似文献   

9.
N Belay  R Sparling    L Daniels 《Applied microbiology》1986,52(5):1080-1085
Methanococcus thermolithotrophicus is a methanogenic archaebacterium that can use either H2 or formate as its source of electrons for reduction of CO2 to methane. Growth and suspended-whole-cell experiments show that H2 plus CO2 methanogenesis was constitutive, while formate methanogenesis required adaptation time; selenium was necessary for formate utilization. Cells grown on formate had 20 to 100 times higher methanogenesis rates on formate than cells grown on H2-CO2 and transferred into formate medium. Enzyme assays with crude extracts and with F420 or methyl viologen as the electron acceptor revealed that hydrogenase was constitutive, while formate dehydrogenase was regulated. Cells grown on formate had 10 to 70 times higher formate dehydrogenase activity than cells grown on H2-CO2 with Se present in the medium; when no Se was added to H2-CO2 cultures, even lower activities were observed. Adaptation to and growth on formate were pH dependent, with an optimal pH for both about one pH unit above that optimal for H2-CO2 (pH 5.8 to 6.5). When cells were grown on H2-CO2 in the presence of formate, formate (greater than or equal to 50 mM) inhibited both growth and methanogenesis at pH 5.8 to 6.2, but not at pH greater than 6.6. Both acetate and propionate produced similar inhibition. Formate inhibition was also observed in Methanospirillum hungatei.  相似文献   

10.
Methanosarcina barkeri has recently been shown to produce a multisubunit membrane-bound [NiFe] hydrogenase designated Ech (Escherichia coli hydrogenase 3) hydrogenase. In the present study Ech hydrogenase was purified to apparent homogeneity in a high yield. The enzyme preparation obtained only contained the six polypeptides which had previously been shown to be encoded by the ech operon. The purified enzyme was found to contain 0.9 mol of Ni, 11.3 mol of nonheme-iron and 10.8 mol of acid-labile sulfur per mol of enzyme. Using the purified enzyme the kinetic parameters were determined. The enzyme catalyzed the H2 dependent reduction of a M. barkeri 2[4Fe-4S] ferredoxin with a specific activity of 50 U x mg protein-1 at pH 7.0 and exhibited an apparent Km for the ferredoxin of 1 microM. The enzyme also catalyzed hydrogen formation with the reduced ferredoxin as electron donor at a rate of 90 U x mg protein-1 at pH 7.0. The apparent Km for the reduced ferredoxin was 7.5 microM. Reduction or oxidation of the ferredoxin proceeded at similar rates as the reduction or oxidation of oxidized or reduced methylviologen, respectively. The apparent Km for H2 was 5 microM. The kinetic data strongly indicate that the ferredoxin is the physiological electron donor or acceptor of Ech hydrogenase. Ech hydrogenase amounts to about 3% of the total cell protein in acetate-grown, methanol-grown or H2/CO2-grown cells of M. barkeri, as calculated from quantitative Western blot experiments. The function of Ech hydrogenase is ascribed to ferredoxin-linked H2 production coupled to the oxidation of the carbonyl-group of acetyl-CoA to CO2 during growth on acetate, and to ferredoxin-linked H2 uptake coupled to the reduction of CO2 to the redox state of CO during growth on H2/CO2 or methanol.  相似文献   

11.
Cell suspensions of Methanosarcina barkeri, grown on acetate, catalyzed the conversion of carbon monoxide and H2O to CO2 and H2 in stoichiometric amounts when methane formation was inhibited by bromoethanesulfonate. The specific activity was 80-120 nmol min-1 mg protein-1 at 5% CO in the gas phase. CO oxidation was coupled with the phosphorylation of ADP as indicated by a rapid increase of the intracellular ATP level upon start of the reaction. At least 0.1 mol ATP was formed/mol CO consumed. The onset of CO oxidation was also accompanied by an increase of the proton motive force (delta p) from 100 mV to 150 mV (inside negative). Addition of the uncoupler tetrachlorosalicylanilide to CO-metabolizing cells led to a rapid decrease of the ATP level and of delta p, and to an increase of the CO oxidation rate up to 70%. In the presence of the proton-translocating ATPase inhibitor N,N'-dicyclohexylcarbodiimide the phosphorylation of ADP was inhibited and CO oxidation slowed down, whereas delta p was almost unaffected. Inhibition of CO oxidation under these conditions was relieved by the addition of the protonophore tetrachlorosalicylanilide. The results indicate that in acetate-grown M. barkeri the free-energy change associated with the formation of CO2 and H2 from CO and H2O (delta G degrees = -20 kJ/mol) can be used to drive the phosphorylation of ADP and that the coupling proceeds via a chemiosmotic mechanism. A possible role of the carbon monoxide oxidation reaction as an energy-conserving site in acetate fermentation to CH4 and CO2 is discussed.  相似文献   

12.
Methanococcus thermolithotrophicus is able to produce methane either from H2-CO2 or from formate. The route of formate entry into the methanogenic pathway was investigated by using 2H2O or [13C]formate and analysis by mass spectrometry. When cells (H2-CO2 or formate grown) were transferred to formate medium in 95% 2H water, the proportion of 2H in methane was 95%. When cells (H2-CO2 or formate grown) were transferred to media containing [13C]formate in the presence of H2-CO2 or He-CO2, the ratio of 13CH4 to 12CH4 increased over time parallel to the ratio of 13CO2 to 12CO2. The cells catalyzed a significant exchange of label between [13C]formate and 13CO2.  相似文献   

13.
Carbon monoxide-dependent production of H2, CO2, and CH4 was detected in crude cell extracts of acetate-grown Methanosarcina barkeri. This metabolic transformation was associated with an active methyl viologen-linked CO dehydrogenase activity (5 to 10 U/mg of protein). Carbon monoxide dehydrogenase activity was inhibited 85% by 10 microM KCN and was rapidly inactivated by O2. The enzyme was nearly homogeneous after 20-fold purification, indicating that a significant proportion of soluble cell protein was CO dehydrogenase (ca. 5%). The native purified enzyme displayed a molecular weight of 232,000 and a two-subunit composition of 92,000 and 18,000 daltons. The enzyme was shown to contain nickel by isolation of radioactive CO dehydrogenase from cells grown in 63Ni. Analysis of enzyme kinetic properties revealed an apparent Km of 5 mM for CO and a Vmax of 1,300 U/mg of protein. The spectral properties of the enzyme were similar to those published for CO dehydrogenase from acetogenic anaerobes. The physiological functions of the enzyme are discussed.  相似文献   

14.
Abstract Trace amounts of carbon monoxide were produced and subsequently consumed during the growth of Desulfovibrio vulgaris on organic electron donors. D. vulgaris also utilized carbon monoxide as the sole electron donor for growth and sulfate reduction. Growth of D. vulgaris on CO, H2 or organic electron donors was inhibited at ≥4.5% CO in the culture headspace. At lower CO concentrations, hydrogen was produced as a consequence of CO consumption and consumed when the CO partial pressure was decreased. The rate of CO consumption was ten-fold higher in D. vulgaris grown on either CO, lactate or pyruvate than when cells were grown on H2 as electron donor. The physiological function of CO metabolism and a CO-dependent hydrogen cycle in D. vulgaris is discussed.  相似文献   

15.
Studies to examine the microbial fermentation of coal gasification products (CO2, H2 and CO) to methane have been done with a mixed culture of anaerobic bacteria selected from an anaerobic sewage digestor. The specific rate of methane production at 37°C reached 25 mmol/g cell hr. The stoichiometry for methane production was 4 mmol H2/mol CO2. Cell recycle was used to increase the cell concentration from 2.5 to 8.3 g/liter; the volumetric rate of methane production ran from 1.3 to 4 liter/liter hr. The biogasification was also examined at elevated pressure (450 psi) and temperature to facilitate interfacing with a coal gasifier. At 60°C, the specific rate of methane production reached 50 mmol/g cell hr. Carbon monoxide utilization by the mixed culture of anaerobes and by a Rhodopseudomonas species was examined. Both cultures are able to carry out the shift conversion of CO and water to CO2 and hydrogen.  相似文献   

16.
Growth of Methanosarcina sp. strain 227 and Methanosarcina mazei on H(2)-CO(2) and mixtures of H(2)-CO(2) and acetate or methanol was examined. The growth yield of strain 227 on H(2)-CO(2) in complex medium was 8.4 mg/mmol of methane produced. Growth in defined medium was characteristically slower, and cell yields were proportionately lower. Labeling studies confirmed that CO(2) was rapidly reduced to CH(4) in the presence of H(2), and little acetate was used for methanogenesis until H(2) was exhausted. This resulted in a biphasic pattern of growth similar to that reported for strain 227 grown on methanol-acetate mixtures. Biphasic growth was not observed in cultures on mixtures of H(2)-CO(2) and methanol, and less methanol oxidation occurred in the presence of H(2). In M. mazei the aceticlastic reaction was also inhibited by the added H(2), but since the cultures did not immediately metabolize H(2), the duration of the inhibition was much longer.  相似文献   

17.
Extracts of aerobically, CO-autotrophically grown cells of Pseudomonas carboxydovorans were shown to catalyze the oxidation of CO to CO(2) in the presence of methylene blue, pyocyanine, thionine, phenazine methosulfate, or toluylene blue under strictly anaerobic conditions. Viologen dyes and NAD(P)(+) were ineffective as electron acceptors. The same extracts catalyzed the oxidation of formate and of hydrogen gas; the spectrum of electron acceptors was identical for the three substrates, CO, formate, and H(2). The CO- and the formate-oxidizing activities were found to be soluble enzymes, whereas hydrogenase was membrane bound exclusively. The rates of oxidation of CO, formate, and H(2) were measured spectrophotometrically following the reduction of methylene blue. The rate of carbon monoxide oxidation followed simple Michaelis-Menten kinetics; the apparent K(m) for CO was 45 muM. The reaction rate was maximal at pH 7.0, and the temperature dependence followed the Arrhenius equation with an activation energy (DeltaH(0)) of 35.9 kJ/mol (8.6 kcal/mol). Neither free formate nor hydrogen gas is an intermediate of the CO oxidation reaction. This conclusion is based on the differential sensitivity of the activities of formate dehydrogenase, hydrogenase, and CO dehydrogenase to heat, hypophosphite, chlorate, cyanide, azide, and fluoride as well as on the failure to trap free formate or hydrogen gas in coupled optical assays. These results support the following equation for CO oxidation in P. carboxydovorans: CO + H(2)O --> CO(2) + 2 H(+) + 2e(-) The CO-oxidizing activity of P. carboxydovorans differed from that of Clostridium pasteurianum by not reducing viologen dyes and by a pH optimum curve that did not show an inflection point.  相似文献   

18.
R Fischer  R K Thauer 《FEBS letters》1990,269(2):368-372
Cell extracts of Methanosarcina barkeri grown on acetate catalyzed the conversion of acetyl-CoA to CO2 and CH4 at a specific rate of 50 nmol min-1 mg-1. When ferredoxin was removed from the extracts by DEAE-Sephacel anion exchange chromatography, the extracts were inactive but full activity was restored upon addition of purified ferredoxin from M. barkeri or from Clostridium pasteurianum. The apparent Km for ferredoxin from M. barkeri was determined to be 2.5 M. A ferredoxin dependence was also found for the formation of CO2, H2 and methylcoenzyme M from acetyl-CoA, when methane formation was inhibited by bromoethanesulfonate. Reduction of methyl-coenzyme M with H2 did not require ferredoxin. These and other data indicate that ferredoxin is involved as electron carrier in methanogenesis from acetate. Methanogenesis from acetyl-CoA in cell extracts was not dependent on the membrane fraction, which contains the cytochromes.  相似文献   

19.
M Karrasch  G B?rner  M Enssle  R K Thauer 《FEBS letters》1989,253(1-2):226-230
Formylmethanofuran dehydrogenase, a key enzyme of methanogenesis, was purified 100-fold from methanol grown Methanosarcina barkeri to apparent homogeneity and a specific activity of 34 mumol.min-1.mg protein-1. Molybdenum was found to co-migrate with the enzyme activity. The molybdenum content of purified preparations was 3-4 nmol per mg protein equal to 0.6-0.8 mol molybdenum per mol enzyme of apparent molecular mass 200 kDa. Evidence is presented that also formylmethanofuran dehydrogenase from H2/CO2 grown Methanobacterium thermoautotrophicum (strain Marburg) is a molybdoenzyme.  相似文献   

20.
Cell extracts of acetate-grown Methanosarcina strain TM-1 and Methanosarcina acetivorans both contained CH3-S-CoM methylreductase activity. The methylreductase activity was supported by CO and H2 but not by formate as electron donors. The CO-dependent activity was equivalent to the H2-dependent activity in strain TM-1 and was fivefold higher than the H2-dependent activity of M. acetivorans. When strain TM-1 was cultured on methanol, the CO-dependent activity was reduced to 5% of the activity in acetate-grown cells. Methanobacterium formicicum grown on H2-CO2 contained no CO-dependent methylreductase activity. The CO-dependent methylreductase of strain TM-1 had a pH optimum of 5.5 and a temperature optimum of 60 degrees C. The activity was stimulated by the addition of MgCl2 and ATP. Both acetate-grown strain TM-1 and acetate-grown M. acetivorans contained CO dehydrogenase activities of 9.1 and 3.8 U/mg, respectively, when assayed with methyl viologen. The CO dehydrogenase of acetate-grown cells rapidly reduced FMN and FAD, but coenzyme F420 and NADP+ were poor electron acceptors. No formate dehydrogenase was detected in either organism when grown on acetate. The results suggest that a CO-dependent CH3-S-CoM methylreductase system is involved in the pathway of the conversion of acetate to methane and that free formate is not an intermediate in the pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号