首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of changes in tropical land use on soil emissions of nitrous oxide (N2O) and nitric oxide (NO) are not well understood. We examined emissions of N2O and NO and their relationships to land use and forest composition, litterfall, soil nitrogen (N) pools and turnover, soil moisture, and patterns of carbon (C) cycling in a lower montane, subtropical wet region of Puerto Rico. Fluxes of N2O and NO were measured monthly for over 1 year in old (more than 60 years old) pastures, early- and mid-successional forests previously in pasture, and late-successional forests not known to have been in pasture within the tabonuco (Dacryodes excelsa) forest zone. Additional, though less frequent, measures were also made in an experimentally fertilized tabonuco forest. N2O fluxes exceeded NO fluxes at all sites, reflecting the consistently wet environment. The fertilized forest had the highest N oxide emissions (22.0 kg N · ha−1· y−1). Among the unfertilized sites, the expected pattern of increasing emissions with stand age did not occur in all cases. The mid-successional forest most dominated by leguminous trees had the highest emissions (9.0 kg N · ha−1· y−1), whereas the mid-successional forest lacking legumes had the lowest emissions (0.09 kg N · ha−1· y−1). N oxide fluxes from late-successional forests were higher than fluxes from pastures. Annual N oxide fluxes correlated positively to leaf litter N, net nitrification, potential nitrification, soil nitrate, and net N mineralization and negatively to leaf litter C:N ratio. Soil ammonium was not related to N oxide emissions. Forests with lower fluxes of N oxides had higher rates of C mineralization than sites with higher N oxide emissions. We conclude that (a) N oxide fluxes were substantial where the availability of inorganic N exceeded the requirements of competing biota; (b) species composition resulting from historical land use or varying successional dynamics played an important role in determining N availability; and (c) the established ecosystem models that predict N oxide loss from positive relationships with soil ammonium may need to be modified. Received 22 February 2000; accepted 6 September 2000.  相似文献   

2.
The ongoing climate change is predicted to induce more weather extremes such as frequent drought and high-intensity precipitation events, causing more severe drying-rewetting cycles in soil. However, it remains largely unknown how these changes will affect soil nitrogen (N)-cycling microbes and the emissions of potent greenhouse gas nitrous oxide (N2O). Utilizing a field precipitation manipulation in a semi-arid grassland on the Loess Plateau, we examined how precipitation reduction (ca. −30%) influenced soil N2O and carbon dioxide (CO2) emissions in field, and in a complementary lab-incubation with simulated drying-rewetting cycles. Results obtained showed that precipitation reduction stimulated plant root turnover and N-cycling processes, enhancing soil N2O and CO2 emissions in field, particularly after each rainfall event. Also, high-resolution isotopic analyses revealed that field soil N2O emissions primarily originated from nitrification process. The incubation experiment further showed that in field soils under precipitation reduction, drying-rewetting stimulated N mineralization and ammonia-oxidizing bacteria in favor of genera Nitrosospira and Nitrosovibrio, increasing nitrification and N2O emissions. These findings suggest that moderate precipitation reduction, accompanied with changes in drying-rewetting cycles under future precipitation scenarios, may enhance N cycling processes and soil N2O emissions in semi-arid ecosystems, feeding positively back to the ongoing climate change.  相似文献   

3.
Monoculture croplands are a major source of global anthropogenic emissions of nitrous oxide (N2O), a potent greenhouse gas that contributes to ozone depletion. Agroforestry has the potential to reduce N2O emissions. Presently, there is no systematic comparison of soil N2O emissions between cropland agroforestry and monoculture systems in Central Europe. We investigated the effects of converting the monoculture cropland system into the alley cropping agroforestry system on soil N2O fluxes at three sites (each site has paired agroforestry and monoculture) in Germany, where agroforestry combined crop rows and poplar short-rotation coppice (SRC). We measured soil N2O fluxes monthly over 2 years (March 2018–January 2020) using static vented chambers. Annual soil N2O emissions from agroforestry ranged from 0.21 to 2.73 kg N ha−1 year−1, whereas monoculture N2O emissions ranged from 0.34 to 3.00 kg N ha−1 year−1. During the rotation of corn crop, with high fertilization rates, agroforestry reduced soil N2O emissions by 9% to 56% compared to monocultures. This was mainly caused by low soil N2O emissions from the unfertilized agroforestry tree rows. Soil N2O fluxes were predominantly controlled by soil mineral N in both agroforestry and monoculture systems. Our findings suggest that optimized fertilizer input will further enhance the potential of agroforestry for mitigating N2O emissions.  相似文献   

4.
Residual effects of different fertilizers (mineral and organic) on the first pulses of carbon dioxide (CO2), nitric oxide (NO), and nitrous oxide (N2O) after rewetting dry soil with or without application of a mineral N fertilizer were studied in a laboratory experiment. Six months before this study was conducted the fields had received either manure + urea, manure, urea or no fertilizer. In the first phase the soil was rewetted with water simulating a summer shower (heavy rainfall in short time) and in the second phase with a urea solution simulating a mineral fertilization. There were not significant differences in trace gas emissions between earlier field treatments after soil was rewetted with water addition. However, after urea addition, plots that had received manure 6 months earlier showed smaller total emissions of N2O and NO compared to plots that had only received urea. The residual effect of manure can play an important role in carbon poor soils under arid-semiarid climate in mitigating atmospheric pollutants such us NO and N2O.  相似文献   

5.
An empirical model of nitrous oxide emission from agricultural soils has been developed. It is based on the relationship between N2O and three soil parameters – soil mineral N (ammonium plus nitrate) content in the topsoil, soil water‐filled pore space and soil temperature – determined in a study on a fertilized grassland in 1992 and 1993. The model gave a satisfactory prediction of seasonal fluxes in other seasons when fluxes were much higher, and also from other grassland sites and from cereal and oilseed rape crops, over a wide flux range (< 1 to > 20 kg N2O‐N ha?1 y?1). However, the model underestimated emissions from potato and broccoli crops; possible reasons for this are discussed. This modelling approach, based as it is on well‐established and widely used soil measurements, has the potential to provide flux estimates from a much wider range of agricultural sites than would be possible by direct measurement of N2O emissions.  相似文献   

6.
Soils are among the important sources of atmospheric nitric oxide (NO) and nitrous oxide (N2O), acting as a critical role in atmospheric chemistry. Updated data derived from 114 peer‐reviewed publications with 520 field measurements were synthesized using meta‐analysis procedure to examine the N fertilizer‐induced soil NO and the combined NO+N2O emissions across global soils. Besides factors identified in earlier reviews, additional factors responsible for NO fluxes were fertilizer type, soil C/N ratio, crop residue incorporation, tillage, atmospheric carbon dioxide concentration, drought and biomass burning. When averaged across all measurements, soil NO‐N fluxes were estimated to be 4.06 kg ha?1 yr?1, with the greatest (9.75 kg ha?1 yr?1) in vegetable croplands and the lowest (0.11 kg ha?1 yr?1) in rice paddies. Soil NO emissions were more enhanced by synthetic N fertilizer (+38%), relative to organic (+20%) or mixed N (+18%) sources. Compared with synthetic N fertilizer alone, synthetic N fertilizer combined with nitrification inhibitors substantially reduced soil NO emissions by 81%. The global mean direct emission factors of N fertilizer for NO (EFNO) and combined NO+N2O (EFc) were estimated to be 1.16% and 2.58%, with 95% confidence intervals of 0.71–1.61% and 1.81–3.35%, respectively. Forests had the greatest EFNO (2.39%). Within the croplands, the EFNO (1.71%) and EFc (4.13%) were the greatest in vegetable cropping fields. Among different chemical N fertilizer varieties, ammonium nitrate had the greatest EFNO (2.93%) and EFc (5.97%). Some options such as organic instead of synthetic N fertilizer, decreasing N fertilizer input rate, nitrification inhibitor and low irrigation frequency could be adopted to mitigate soil NO emissions. More field measurements over multiyears are highly needed to minimize the estimate uncertainties and mitigate soil NO emissions, particularly in forests and vegetable croplands.  相似文献   

7.
Nitrogen excreted by cattle during grazing is a significant source of atmospheric nitrous oxide (N2O). The regulation of N2O emissions is not well understood, but may vary with urine composition and soil conditions. This laboratory study was undertaken to describe short-term effects on N2O emissions and soil conditions, including microbial dynamics, of urea amendment at two different rates (22 and 43 g N m−2). The lower urea concentration was also combined with an elevated soil NO 3 concentration. Urea solutions labelled with 25 atom%15N were added to the surface of repacked pasture soil cores and incubated for 1, 3, 6 or 9 days under constant conditions (60% WFPS, 14 °C). Soil inorganic N (NH 4 + , NO 2 and NO 3 ), pH, electrical conductivity and dissolved organic C were quantified. Microbial dynamics were followed by measurements of CO2 evolution, by analyses of membrane lipid (PLFA) composition, and by measurement of potential ammonium oxidation and denitrifying enzyme activity. The total recovery of15N averaged 84%. Conversion of urea-N to NO 3 was evident, but nitrification was delayed at the highest urea concentration and was accompanied by an accumulation of NO 2 . Nitrous oxide emissions were also delayed at the highest urea amendment level, but accelerated towards the end of the study. The pH interacted with NH 4 + to produce inhibitory concentrations of NH3(aq) at the highest urea concentration, and there was evidence for transient negative effects of urea amendment on both nitrifying and denitrifying bacteria in this treatment. However, PLFA dynamics indicated that initial inhibitory effects were replaced by increased microbial activity and net growth. It is concluded that urea-N level has qualitative, as well as quantitative effects on soil N transformations in urine patches.  相似文献   

8.
Rains at the end of the dry season can trigger increases in emissions of nitric oxide (NO) and nitrous oxide from forest and pasture soils in the Amazon Basin. The relative importance of the rain-stimulated emissions in the seasonal and annual budgets of these nitrogen gases for forests and pastures in the western Amazon is not well established. We measured soil emissions of NO and N2O from a forest and two pastures, 11 and 26 years old, after a simulated rain event. Wetting the soil resulted in very small pulses of NO or N2O from forest soils and no significant NO or N2O pulses from the pastures. We estimated that in the forest, the amounts of each gas emitted from pulses during the dry to wet transition period represented 3.4% of the NO and 1.8% of the N2O dry-season emissions, but amounted to less than 2% of the annual emissions of either gas. Total N oxide emissions of 5.6 kg N/ha/yr from the forest were nearly evenly divided between NO (42%) and N2O (58%). The emissions of NO were evenly distributed over the wet and dry seasons, while over 84% N2O fluxes occurred during the wet season.  相似文献   

9.
No‐tillage (NT), a practice that has been shown to increase carbon sequestration in soils, has resulted in contradictory effects on nitrous oxide (N2O) emissions. Moreover, it is not clear how mitigation practices for N2O emission reduction, such as applying nitrogen (N) fertilizer according to soil N reserves and matching the time of application to crop uptake, interact with NT practices. N2O fluxes from two management systems [conventional (CP), and best management practices: NT + reduced fertilizer (BMP)] applied to a corn (Zea mays L.), soybean (Glycine max L.), winter‐wheat (Triticum aestivum L.) rotation in Ontario, Canada, were measured from January 2000 to April 2005, using a micrometeorological method. The superimposition of interannual variability of weather and management resulted in mean monthly N2O fluxes ranging from − 1.9 to 61.3 g N ha−1 day−1. Mean annual N2O emissions over the 5‐year period decreased significantly by 0.79 from 2.19 kg N ha−1 for CP to 1.41 kg N ha−1 for BMP. Growing season (May–October) N2O emissions were reduced on average by 0.16 kg N ha−1 (20% of total reduction), and this decrease only occurred in the corn year of the rotation. Nongrowing season (November–April) emissions, comprised between 30% and 90% of the annual emissions, mostly due to increased N2O fluxes during soil thawing. These emissions were well correlated (r2= 0.90) to the accumulated degree‐hours below 0 °C at 5 cm depth, a measure of duration and intensity of soil freezing. Soil management in BMP (NT) significantly reduced N2O emissions during thaw (80% of total reduction) by reducing soil freezing due to the insulating effects of the larger snow cover plus corn and wheat residue during winter. In conclusion, significant reductions in net greenhouse gas emissions can be obtained when NT is combined with a strategy that matches N application rate and timing to crop needs.  相似文献   

10.
李婉书  赵劲松 《生态学报》2023,43(11):4712-4721
土壤氧化亚氮(N2O)主要产生于土壤微生物参与的氮循环过程,其排放量受磷含量及有效性影响。添加磷肥有助于缓解陆地生态系统磷限制,提升土壤有效磷含量,进一步影响土壤微生物对氮的利用,同时控制N2O排放。然而不同独立实验中N2O对外源磷添加的响应差异较大。研究从发表的中、英文文献中收集了54份关于施用磷肥与N2O排放量的观测结果,采用元分析方法确定添加外源磷后N2O排放量的响应差异及潜在影响因素。结果表明:(1)外源磷添加对土壤N2O排放量影响不显著;但在磷肥施用量> 50 kg P/hm2的室外实验中土壤N2O排放量显著降低了32.5%;施用NaH2PO4的室内实验中N2O排放量显著降低了18.4%。(2)土壤N2O对外源磷添加响应的高变异性是磷肥施用量和土壤含水量、土壤pH、土地利用类型、磷肥种类、纬度和实验时间多种影响...  相似文献   

11.
The availability of O2 is believed to be one of the main factors regulating nitrification and denitrification and the release of NO and N2O. The availability of O2 in soil is controlled by the O2 partial pressure in the gas phase and by the moisture content in the soil. Therefore, we investigated the influence of O2 partial pressures and soil moisture contents on the NO and N2O release in a sandy and a loamy silt and differentiated between nitrification and denitrification by selective inhibition of nitrification with 10 Pa acetylene. At 60% whc (maximum water holding capacity) NO and N2O release by denitrification increased with decreasing O2 partial pressure and reached a maximum under anoxic conditions. Under anoxic conditions NO and N2O were only released by denitrification. NO and N2O release by nitrification also increased with decreasing O2 partial pressure, but reached a maximum at 0.1–0.5% O2 and then decreased again. Nitrification was the main source of NO and N2O at O2 partial pressures higher than 0.1–0.5% O2. At lower O2 partial pressures denitrification was the main source of NO and N2O. With decreasing O2 partial pressure N2O release increased more than NO release, indicating that the N2O release was more sensitive against O2 than the NO release. At ambient O2 partial pressure (20.5% O2) NO and N2O release by denitrification increased with increasing soil moisture content. The maximum NO and N2O release was observed at soil moisture contents of 65–80% whc and 100% whc, respectively. NO and N2O release by nitrification also increased with increasing soil moisture content with a maximum at 45–55% whc and 90% whc, respectively. Nitrification was the main source of NO and N2O at soil moisture contents lower than 90% whc and 80% whc, respectively. Higher soil moisture contents favoured NO and N2O release by denitrification. Soil texture had also an effect on the release of NO and N2O. The coarse-textured sandy silt released more NO than N2O compared with the fine-textured loamy silt. At high soil moisture contents (80–100% whc) the fine-textured soil showed a higher N2O release by denitrification than the coarse-textured soil. We assume that the fine-textured soil became anoxic at a lower soil moisture content than the coarse-textured soil. In conclusion, the effects of O2 partial pressure, soil moisture and soil texture were consistent with the theory that denitrification increasingly contributes to the release of NO and in particular N2O when conditions for soil microorganisms become increasingly anoxic.  相似文献   

12.
Our understanding and quantification of global soil nitrous oxide (N2O) emissions and the underlying processes remain largely uncertain. Here, we assessed the effects of multiple anthropogenic and natural factors, including nitrogen fertilizer (N) application, atmospheric N deposition, manure N application, land cover change, climate change, and rising atmospheric CO2 concentration, on global soil N2O emissions for the period 1861–2016 using a standard simulation protocol with seven process‐based terrestrial biosphere models. Results suggest global soil N2O emissions have increased from 6.3 ± 1.1 Tg N2O‐N/year in the preindustrial period (the 1860s) to 10.0 ± 2.0 Tg N2O‐N/year in the recent decade (2007–2016). Cropland soil emissions increased from 0.3 Tg N2O‐N/year to 3.3 Tg N2O‐N/year over the same period, accounting for 82% of the total increase. Regionally, China, South Asia, and Southeast Asia underwent rapid increases in cropland N2O emissions since the 1970s. However, US cropland N2O emissions had been relatively flat in magnitude since the 1980s, and EU cropland N2O emissions appear to have decreased by 14%. Soil N2O emissions from predominantly natural ecosystems accounted for 67% of the global soil emissions in the recent decade but showed only a relatively small increase of 0.7 ± 0.5 Tg N2O‐N/year (11%) since the 1860s. In the recent decade, N fertilizer application, N deposition, manure N application, and climate change contributed 54%, 26%, 15%, and 24%, respectively, to the total increase. Rising atmospheric CO2 concentration reduced soil N2O emissions by 10% through the enhanced plant N uptake, while land cover change played a minor role. Our estimation here does not account for indirect emissions from soils and the directed emissions from excreta of grazing livestock. To address uncertainties in estimating regional and global soil N2O emissions, this study recommends several critical strategies for improving the process‐based simulations.  相似文献   

13.
Tropical nitrogen (N) deposition is projected to increase substantially within the coming decades. Increases in soil emissions of the climate‐relevant trace gases NO and N2O are expected, but few studies address this possibility. We used N addition experiments to achieve N‐enriched conditions in contrasting montane and lowland forests and assessed changes in the timing and magnitude of soil N‐oxide emissions. We evaluated transitory effects, which occurred immediately after N addition, and long‐term effects measured at least 6 weeks after N addition. In the montane forest where stem growth was N limited, the first‐time N additions caused rapid increases in soil N‐oxide emissions. During the first 2 years of N addition, annual N‐oxide emissions were five times (transitory effect) and two times (long‐term effect) larger than controls. This contradicts the current assumption that N‐limited tropical montane forests will respond to N additions with only small and delayed increases in soil N‐oxide emissions. We attribute this fast and large response of soil N‐oxide emissions to the presence of an organic layer (a characteristic feature of this forest type) in which nitrification increased substantially following N addition. In the lowland forest where stem growth was neither N nor phosphorus (P) limited, the first‐time N additions caused only gradual and minimal increases in soil N‐oxide emissions. These first N additions were completed at the beginning of the wet season, and low soil water content may have limited nitrification. In contrast, the 9‐ and 10‐year N‐addition plots displayed instantaneous and large soil N‐oxide emissions. Annual N‐oxide emissions under chronic N addition were seven times (transitory effect) and four times (long‐term effect) larger than controls. Seasonal changes in soil water content also caused seasonal changes in soil N‐oxide emissions from the 9‐ and 10‐year N‐addition plots. This suggests that climate change scenarios, where rainfall quantity and seasonality change, will alter the relative importance of soil NO and N2O emissions from tropical forests exposed to elevated N deposition.  相似文献   

14.
Intensive vegetable production exhibits contrasting characteristics of high nitrous oxide (N2O) emissions and low nitrogen use efficiency (NUE). In an effort to mitigate N2O emissions and improve NUE, a field experiment with nine consecutive vegetable crops was designed to study the combined effects of nitrogen (N) and biochar amendment and their interaction on soil properties, N2O emission and NUE in an intensified vegetable field in southeastern China. We found that N application significantly increased N2O emissions, N2O–N emission factors and yield‐scaled N2O emissions by 51–159%, 9–125% and 14–131%, respectively. Moreover, high N input significantly decreased N partial factor productivity (PFPN) and even yield during the seventh to ninth vegetable crops along with obvious soil degradation and mineral N accumulation. To the contrary, biochar amendment resulted in significant decreases in cumulative N2O emissions, N2O–N emission factor and yield‐scaled N2O emissions by 5–39%, 16–67% and 14–53%, respectively. In addition, biochar significantly increased yield, PFPN and apparent recovery of N (ARN). Although without obvious influence during the first to fourth vegetable crops, biochar amendment mitigated N2O emissions during the fifth to ninth vegetable crops. The relative effects of biochar amendments were reduced with increasing N application rate. Hence, while high N input produced adverse consequences such as mineral N accumulation and soil degradation in the vegetable field, biochar amendment can be a beneficial agricultural strategy to mitigate N2O emissions and improve NUE and soil quality in vegetable field.  相似文献   

15.
Nitrous oxide fluxes from savanna (miombo) woodlands in Zimbabwe   总被引:1,自引:0,他引:1  
Aim We test the hypothesis that land use and climate are important controls of nitrous oxide (N2O) emissions from savanna ecosystems, and that these emissions can be represented by a mechanistic model of carbon (C) and nitrogen (N) transformations. Location Miombo woodlands in Zimbabwe are part of widespread woody savanna formations in southern and central Africa that cover more than 2.7 million km2. The rainfall in this region is around 800 mm and is concentrated in the period between November and March. Methods Losses of N2O were measured along transects in two field areas using static chambers over a period of 1 year. The vegetation in both areas was dominated by Julbernardia globiflora and Brachystegia spiciformis, but had differing management systems (burned and unburned), soil properties and site characteristics (slope and drainage). The effects of simulated rainfall and fertilizer additions were studied in laboratory incubations. Results Patterns of N2O emissions were strongly linked to rainfall. The highest fluxes at both sites were measured within 18 days of the onset of the first rains in November, with fluxes of up to 42 μg N m?2 h?1. During the dry season, fluxes were lower, but a large proportion (R2 values between 0.8 and 0.95, P < 0.001) of the N2O flux could be predicted by variations in soil moisture. Soil columns were set up in the laboratory to which simulated rainwater was added, and the amounts and timing of rainwater addition were varied. Losses of N2O were highest within the first week of the laboratory study. Altering the amount of rainwater addition did not significantly affect N2O loss; however, a continuous addition of water resulted in higher losses of N2O (up to 79 μg N m?2 h?1) than periodic addition of the same amount. A model (denitrification–decomposition) was used to simulate N2O release over a 12 month period, using meteorological data recorded in the vicinity of the field site. The simulations and field data suggest that nitrification was the main process responsible for N2O release during the dry season but that denitrification was more important during the wet season. Main conclusions The release of N2O from dryland savannas was shown to constitute an important nutrient flux, and emissions were strongly linked to patterns of rainfall; however, there was evidence to suggest that the magnitude of fluxes is also influenced locally by differences in soil organic matter concentration and drainage.  相似文献   

16.
Organic compounds and mineral nitrogen (N) usually increase nitrous oxide (N2O) emissions. Vinasse, a by‐product of bio‐ethanol production that is rich in carbon, nitrogen, and potassium, is recycled in sugarcane fields as a bio‐fertilizer. Vinasse can contribute significantly to N2O emissions when applied with N in sugarcane plantations, a common practice. However, the biological processes involved in N2O emissions under this management practice are unknown. This study investigated the roles of nitrification and denitrification in N2O emissions from straw‐covered soils amended with different vinasses (CV: concentrated and V: nonconcentrated) before or at the same time as mineral fertilizers at different time points of the sugarcane cycle in two seasons. N2O emissions were evaluated for 90 days, the period that occurs most of the N2O emission from fertilizers; the microbial genes encoding enzymes involved in N2O production (archaeal and bacterial amoA, fungal and bacterial nirK, and bacterial nirS and nosZ), total bacteria, and total fungi were quantified by real‐time PCR. The application of CV and V in conjunction with mineral N resulted in higher N2O emissions than the application of N fertilizer alone. The strategy of vinasse application 30 days before mineral N reduced N2O emissions by 65% for CV, but not for V. Independent of rainy or dry season, the microbial processes were nitrification by ammonia‐oxidizing bacteria (AOB) and archaea and denitrification by bacteria and fungi. The contributions of each process differed and depended on soil moisture, soil pH, and N sources. We concluded that amoA‐AOB was the most important gene related to N2O emissions, which indicates that nitrification by AOB is the main microbial‐driven process linked to N2O emissions in tropical soil. Interestingly, fungal nirK was also significantly correlated with N2O emissions, suggesting that denitrification by fungi contributes to N2O emission in soils receiving straw and vinasse application.  相似文献   

17.
The emissions of nitrous oxide (N2O) and nitric oxide (NO) from biological nitrogen removal (BNR) operations via nitrification and denitrification is gaining increased prominence. While many factors relevant to the operation of denitrifying reactors can influence N2O and NO emissions from them, the role of different organic carbon sources on these emissions has not been systematically addressed or interpreted. The overall goal of this study was to evaluate the impact of three factors, organic carbon limitation, nitrite concentrations, and dissolved oxygen concentrations on gaseous N2O and NO emissions from two sequencing batch reactors (SBRs), operated, respectively, with methanol and ethanol as electron donors. During undisturbed ultimate‐state operation, emissions of both N2O and NO from either reactor were minimal and in the range of <0.2% of influent nitrate‐N load. Subsequently, the two reactors were challenged with transient organic carbon limitation and nitrite pulses, both of which had little impact on N2O or NO emissions for either electron donor. In contrast, transient exposure to oxygen led to increased production of N2O (up to 7.1% of influent nitrate‐N load) from ethanol grown cultures, owing to their higher kinetics and potentially lower susceptibility to oxygen inhibition. A similar increase in N2O production was not observed from methanol grown cultures. These results suggest that for dissolved oxygen, but not for carbon limitation or nitrite exposure, N2O emission from heterotrophic denitrification reactors can vary as a function of the electron donor used. Biotechnol. Bioeng. 2010; 106: 390–398. © 2010 Wiley Periodicals, Inc.  相似文献   

18.
Anticipated increases in precipitation intensity due to climate change may affect hydrological controls on soil N2O fluxes, resulting in a feedback between climate change and soil greenhouse gas emissions. We evaluated soil hydrologic controls on N2O emissions during experimental water table fluctuations in large, intact soil columns amended with 100 kg ha?1 KNO3‐N. Soil columns were collected from three landscape positions that vary in hydrological and biogeochemical properties (N= 12 columns). We flooded columns from bottom to surface to simulate water table fluctuations that are typical for this site, and expected to increase given future climate change scenarios. After the soil was saturated to the surface, we allowed the columns to drain freely while monitoring volumetric soil water content, matric potential and N2O emissions over 96 h. Across all landscape positions and replicate soil columns, there was a positive linear relationship between total soil N and the log of cumulative N2O emissions (r2= 0.47; P= 0.013). Within individual soil columns, N2O flux was a Gaussian function of water‐filled pore space (WFPS) during drainage (mean r2= 0.90). However, instantaneous maximum N2O flux rates did not occur at a consistent WFPS, ranging from 63% to 98% WFPS across landscape positions and replicate soil columns. In contrast, instantaneous maximum N2O flux rates occurred within a narrow range (?1.88 to ?4.48 kPa) of soil matric potential that approximated field capacity. The relatively consistent relationship between maximum N2O flux rates and matric potential indicates that water filled pore size is an important factor affecting soil N2O fluxes. These data demonstrate that matric potential is the strongest predictor of the timing of N2O fluxes across soils that differ in texture, structure and bulk density.  相似文献   

19.
From spring 2000 through fall 2001, we measured nitric oxide (NO) and nitrous oxide (N2O) fluxes in two temperate forest sites in Massachusetts, USA that have been treated since 1988 with different levels of nitrogen (N) to simulate elevated rates of atmospheric N deposition. Plots within a pine stand that were treated with either 50 or 150 kg N ha?1 yr?1 above background displayed consistently elevated NO fluxes (100–200 µg N m?2 h?1) compared to control plots, while only the higher N treatment plot within a mixed hardwood stand displayed similarly elevated NO fluxes. Annual NO emissions estimated from monthly sampling accounted for 3.0–3.7% of N inputs to the high‐N plots and 8.3% of inputs to the Pine low‐N plot. Nitrous oxide fluxes in the N‐treated plots were generally < 10% of NO fluxes. Net nitrification rates (NRs) and NO production rates measured in the laboratory displayed patterns that were consistent with field NO fluxes. Total N oxide gas flux was positively correlated with contemporaneous measurements of NR and concentration. Acetylene inhibited both nitrification and NO production, indicating that autotrophic nitrification was responsible for the elevated NO production. Soil pH was negatively correlated with N deposition rate. Low levels (3–11 µg N kg?1) of nitrite () were detected in mineral soils from both sites. Kinetic models describing NO production as a function of the protonated form of (nitrous acid [HNO2]) adequately described the mineral soil data. The results indicate that atmospheric deposition may generate losses of gaseous NO from forest soils by promoting nitrification, and that the response may vary significantly between forest types under similar climatic regimes. The lowering of pH resulting from nitrification and/or directly from deposition may also play a role by promoting reactions involving HNO2.  相似文献   

20.
Nitrous oxide (N2O) emissions are subject to intra‐ and interannual variation due to changes in weather and management. This creates significant uncertainties when quantifying estimates of annual N2O emissions from grazed grasslands. Despite these uncertainties, the majority of studies are short‐term in nature (<1 year) and as a consequence, there is a lack of data on interannual variation in N2O emissions. The objectives of this study were to (i) quantify annual N2O emissions and (ii) assess the causes of interannual variation in emissions from grazed perennial ryegrass/white clover grassland. Nitrous oxide emissions were measured from fertilized and grazed perennial ryegrass/white clover grassland (WC) and from perennial ryegrass plots that were not grazed and did not receive N input (GB), over 4 years from 2008 to 2012 in Ireland (52°51′N, 08°21′W). The annual N2O‐N emissions (kg ha?1; mean ± SE) ranged from 4.4 ± 0.2 to 34.4 ± 5.5 from WC and from 1.7 ± 0.8 to 6.3 ± 1.2 from GB. Interannual variation in N2O emissions was attributed to differences in annual rainfall, monthly (December) soil temperatures and variation in N input. Such substantial interannual variation in N2O emissions highlights the need for long‐term studies of emissions from managed pastoral systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号