首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two suppressor mutations of the temperature-sensitive DNA primase mutant dnaG2903 have been characterized. The gene responsible for suppression, era, encodes an essential GTPase of Escherichia coli. One mutation, rnc-15, is an insertion of an IS1 element within the leader region of the rnc operon and causes a polar defect on the downstream genes of the operon. A previously described polar mutation, rnc-40, was also able to suppress dnaG2903. The other mutation, era-1, causes a single amino acid substitution (P17R) in the G1 region of the GTP-binding domain of Era. Analysis of the GTPase activity of the Era-1 mutant protein showed a four- to five-fold decrease in the ability to convert GTP to GDP. Thus, lowered expression of wild-type Era caused by the polar mutations and reduced GTPase activity caused by the era-1 mutation suppresses dnaG2903 as well as a second dnaG allele, parB. Phenotypic analysis of the era-1 mutant at 25 degrees C showed that 10% of the cells contain four segregated nucleoids, indicative of a delay in cell division. Possible mechanisms of suppression of dnaG and roles for Era are discussed.  相似文献   

2.
Genetic suppression of a dnaG mutation in Escherichia coli.   总被引:1,自引:1,他引:0       下载免费PDF全文
  相似文献   

3.
Eleven conditional lethal dnaG(Ts) mutations were located by chemical cleavage of heteroduplexes formed between polymerase chain reaction-amplified DNAs from wild-type and mutant dnaG genes. This entailed end labeling one DNA strand of the heteroduplex, chemically modifying the strands with hydroxylamine or osmium tetroxide (OsO4) at the site of mismatch, and cleaving them with piperidine. The cleavage products were electrophoresed, and the size corresponded to the position of the mutation with respect to the labeled primer. Exact base pair changes were then determined by DNA sequence analysis. The dnaG3, dnaG308, and dnaG399 mutations map within 135 nucleotides of one another near the middle of dnaG. The "parB" allele of dnaG is 36 bp from the 3' end of dnaG and 9 bp downstream of dnaG2903; both appear to result in abnormal chromosome partitioning and diffuse nucleoid staining. A suppressor of the dnaG2903 allele (sdgA5) maps within the terminator T1 just 5' to the dnaG gene. Isogenic strains that carried dnaG2903 and did or did not carry the sdgA5 suppressor were analyzed by a combination of phase-contrast and fluorescence microscopy with 4',6-diamidino-2-phenylindole to stain DNA and visualize the partitioning chromosome. Overexpression of the mutant dnaG allele corrected the abnormal diffuse-nucleoid-staining phenotype associated with normally expressed dnaG2903. The mutations within the dnaG gene appear to cluster into two regions which may represent distinct functional domains within the primase protein.  相似文献   

4.
Gene 2.5 of bacteriophage T7 encodes a ssDNA binding protein (gp2.5) essential for DNA replication. The C-terminal phenylalanine of gp2.5 is critical for function and mutations in that position are dominant lethal. In order to identify gp2.5 interactions we designed a screen for suppressors of gp2.5 lacking the C-terminal phenylalanine. Screening for suppressors of dominant lethal mutations of essential genes is challenging as the phenotype prevents propagation. We select for phage encoding a dominant lethal version of gene 2.5, whose viability is recovered via second-site suppressor mutation(s). Functional gp2.5 is expressed in trans for propagation of the unviable phage and allows suppression to occur via natural selection. The isolated intragenic suppressors support the critical role of the C-terminal phenylalanine. Extragenic suppressor mutations occur in several genes encoding enzymes of DNA metabolism. We have focused on the suppressor mutations in gene 5 encoding the T7 DNA polymerase (gp5) as the gp5/gp2.5 interaction is well documented. The suppressor mutations in gene 5 are necessary and sufficient to suppress the lethal phenotype of gp2.5 lacking the C-terminal phenylalanine. The affected residues map in proximity to aromatic residues and to residues in contact with DNA in the crystal structure of T7 DNA polymerase-thioredoxin.  相似文献   

5.
W. Thomas  R. M. Spell  M. E. Ming    C. Holm 《Genetics》1991,128(4):703-716
We have undertaken a genetic analysis of heat-sensitive and cold-sensitive mutations in TOP2, the gene encoding yeast DNA topoisomerase II. Deletion mapping was used to localize 14 heat-sensitive and four cold-sensitive top2 mutations created by a method biased toward mutations in the 3' two-thirds of the gene. The mutations all appear to be located in the region of DNA topoisomerase II that shows homology to the "A" subunit of bacterial DNA gyrase. The heat-sensitive mutations and one cold-sensitive mutation lie in the center of the gene near the sequence that encodes the active site tyrosine. The three other cold-sensitive mutations map farther toward the 3' end of the gene. The cold-sensitive mutations exhibit intragenic complementation, and the complementation groups correspond to the physical map. We sequenced nine top2 mutations and found that the mutations are usually single missense mutations, frequently involve proline, and affect conserved regions of the protein. Suppressor analysis yielded two intragenic suppressors and seven independent isolates of an allele-specific extragenic suppressor we named tos1; tos1 is not allelic to any genes predicted to encode type I topoisomerase-related proteins. The two intragenic suppressors were tested for allele-specificity; the results revealed a complex pattern of suppression between heat-sensitive and cold-sensitive top2 alleles. These top2 mutations may have compensatory effects on the general stability of the protein.  相似文献   

6.
Five amber mutations affecting essential genes of Escherichia coli have been isolated. The procedure relies on P1-mediated localized mutagenesis(1) and on the use of a recipient strain carrying a strong but instable suppressor gene and a particular thermoinducible λ prophage which kills suppressor hosts at 42°C (2). All five mutations map close to the spcA gene, in a region which codes essentially for ribosomal proteins. Strains harboring the mutations were studied biochemically; all five exhibit defective ribosomal assembly upon loss of suppression.  相似文献   

7.
The PRP4 gene encodes a protein that is a component of the U4/U6 small nuclear ribonucleoprotein particle and is necessary for both spliceosome assembly and pre-mRNA splicing. To identify genes whose products interact with the PRP4 gene or gene product, we isolated second-site suppressors of temperature-sensitive prp4 mutations. We limited ourselves to suppressors with a distinct phenotype, cold sensitivity, to facilitate analysis of mutants. Ten independent recessive suppressors were obtained that identified four complementation groups, spp41, spp42, spp43 and spp44 (suppressor of prp4, numbers 1-4). spp41-spp44 suppress the pre-mRNA splicing defect as well as the temperature-sensitive phenotype of prp4 strains. Each of these spp mutations also suppresses prp3; spp41 and spp42 suppress prp11 as well. Neither spp41 nor spp42 suppresses null alleles of prp3 or prp4, indicating that the suppression does not occur via a bypass mechanism. The spp41 and spp42 mutations are neither allele- nor gene-specific in their pattern of suppression and do not result in a defect in pre-mRNA splicing. Thus the SPP41 and SPP42 gene products are unlikely to participate directly in mRNA splicing or interact directly with Prp3p or Prp4p. Expression of PRP3-lacZ and PRP4-lacZ gene fusions is increased in spp41 strains, suggesting that wild-type Spp41p represses expression of PRP3 and PRP4. SPP41 was cloned and sequenced and found to be essential. spp43 is allelic to the previously identified suppressor srn1, which encodes a negative regulator of gene expression.  相似文献   

8.
We are studying five interacting genes involved in the regulation or coordination of muscle contraction in Caenorhabditis elegans. A distinctive ``rubber-ban'''' muscle-defective phenotype was previously shown to result from rare altered-function mutations in either of two of these genes, unc-93 and sup-10. Null mutations in sup-9, sup-10, sup-18 or unc-93 act as essentially recessive suppressors of these rubber-band mutations. In this work, we identify three new classes of sup-9 alleles: altered-function rubber-band, partial loss-of-function and dominant-suppressor. The existence of rubber-band mutations in sup-9, sup-10 and unc-93 and the suppression of these mutations by null mutations in any of these three genes suggest that these proteins are required at the same step in muscle contraction. Moreover, allele-specific interactions shown by the partial loss-of-function mutations indicate that the products of these interacting genes may physically contact each other in a multiple subunit protein complex. Finally, the phenotypes of double rubber-band mutant combinations suggest that the rubber-band mutations affect a neurogenic rather than a myogenic input in excitation-contraction coupling in muscle.  相似文献   

9.
The second division of the gut precursor E cells is lethally accelerated during Caenorhabditis elegans gastrulation by mutations in the emb-5 gene, which encodes a presumed nuclear protein. We have isolated suppressor mutations of the temperature-sensitive allele emb-5(hc61), screened for them among dpy and other mutations routinely used as genetic markers, and identified eight emb-5 suppressor genes. Of these eight suppressor genes, at least four encode extracellular matrix proteins, i.e., three collagens and one proteoglycan. The suppression of the emb-5 gastrulation defect seemed to require the maternal expression of the suppressors. Phenotypically, the suppressors by themselves slowed down early embryonic cell divisions and corrected the abnormal cell-division sequence of emb-5 mutant embryos. We propose an indirect stress-response mechanism to be the main cause of the suppression because: (1) none of these suppressors is specific, either to particular temperature-sensitive emb-5 alleles or to the emb-5 gene; (2) suppressible alleles of genes, reported here or elsewhere, are temperature sensitive or weak; (3) the suppression is not strong but marginal; (4) the suppression itself shows some degree of temperature dependency; and (5) none of the extracellular matrix proteins identified here is known to be expressed in oocytes or early embryos, despite the present observation that the suppression is maternal. Received: 19 August 1997 / Accepted: 11 December 1997  相似文献   

10.
The second division of the gut precursor E cells is lethally accelerated during Caenorhabditis elegans gastrulation by mutations in the emb-5 gene, which encodes a presumed nuclear protein. We have isolated suppressor mutations of the temperature-sensitive allele emb-5(hc61), screened for them among dpy and other mutations routinely used as genetic markers, and identified eight emb-5 suppressor genes. Of these eight suppressor genes, at least four encode extracellular matrix proteins, i.e., three collagens and one proteoglycan. The suppression of the emb-5 gastrulation defect seemed to require the maternal expression of the suppressors. Phenotypically, the suppressors by themselves slowed down early embryonic cell divisions and corrected the abnormal cell-division sequence of emb-5 mutant embryos. We propose an indirect stress-response mechanism to be the main cause of the suppression because: (1) none of these suppressors is specific, either to particular temperature-sensitive emb-5 alleles or to the emb-5 gene; (2) suppressible alleles of genes, reported here or elsewhere, are temperature sensitive or weak; (3) the suppression is not strong but marginal; (4) the suppression itself shows some degree of temperature dependency; and (5) none of the extracellular matrix proteins identified here is known to be expressed in oocytes or early embryos, despite the present observation that the suppression is maternal.  相似文献   

11.
12.
13.
Escherichia coli C strains containing different deoxyribonucleic acid (DNA) synthesis mutations have been tested for their support of the DNA synthesis of bacteriophage P2 and its satellite phage P4. Bacteriophage P2 requires functional dnaB, dnaE, and dnaG E. coli gene products for DNA synthesis, whereas it does not require the products of the dnaA, dnaC, or dnaH genes. In contrast, the satellite virus P4 requires functional dnaE and dnaH gene products for DNA synthesis and does not need the products of the dnaA, dnaB, dnaC, and dnaG genes. Thus the P2 and P4 genomes are replicated differently, even though they are packaged in heads made of the same protein.  相似文献   

14.
K Yamanaka  T Ogura  H Niki    S Hiraga 《Journal of bacteriology》1992,174(23):7517-7526
The mukB gene encodes a protein involved in chromosome partitioning in Escherichia coli. To study the function of this protein, we isolated from the temperature-sensitive mukB null mutant and characterized 56 suppressor mutants which could grow at 42 degrees C. Ten of the mutants also showed cold-sensitive growth at 22 degrees C. Using one of the cold-sensitive mutants as host, the wild type of the suppressor gene was cloned. The cloned suppressor gene complemented all of the 56 suppressor mutations. DNA sequencing revealed the presence of an open reading frame of 723 bp which could encode a protein of 25,953 Da. The gene product was indeed detected. The previously undiscovered gene, named smbA (suppressor of mukB), is located at 4 min on the E. coli chromosome, between the tsf and frr genes. The smbA gene is essential for cell proliferation in the range from 22 to 42 degrees C. Cells which lacked the SmbA protein ceased macromolecular synthesis. The smbA mutants are sensitive to a detergent, sodium dodecyl sulfate, and they show a novel morphological phenotype under nonpermissive conditions, suggesting a defect in specific membrane sites.  相似文献   

15.
16.
The highly conserved eukaryotic translation initiation factor eIF5A has been proposed to have various roles in the cell, from translation to mRNA decay to nuclear protein export. To further our understanding of this essential protein, three temperature-sensitive alleles of the yeast TIF51A gene have been characterized. Two mutant eIF5A proteins contain mutations in a proline residue at the junction between the two eIF5A domains and the third, strongest allele encodes a protein with a single mutation in each domain, both of which are required for the growth defect. The stronger tif51A alleles cause defects in degradation of short-lived mRNAs, supporting a role for this protein in mRNA decay. A multicopy suppressor screen revealed six genes, the overexpression of which allows growth of a tif51A-1 strain at high temperature; these genes include PAB1, PKC1, and PKC1 regulators WSC1, WSC2, and WSC3. Further results suggest that eIF5A may also be involved in ribosomal synthesis and the WSC/PKC1 signaling pathway for cell wall integrity or related processes.  相似文献   

17.
Suppressor mutations located within dnaA can suppress the temperature sensitivity of a dnaZ polymerization mutant, indicating in vivo interaction of the products of these genes. The suppressor allele of dnaA [designated dnaA(SUZ, Cs)] could not be introduced, even at the permissive temperature, by transduction into temperature-sensitive (Ts) dnaC or dnaG recipients; it was transduced into dnaB(Ts) and dnaE(Ts) strains but at very low frequency. Recipient cells which were dnaA+ dnaE(Ts) were killed by the incoming dnaA(SUZ, Cs) allele, and it is presumed that combinations of dnaA(SUZ, Cs) with dnaB(Ts), dnaC(Ts), or dnaG(Ts) are lethal also. In one specific case, the lethality required the presence of three alleles: the incoming dnaA suppressor mutation, the resident dnaA+ gene, and the dnaB(Ts) gene. This was shown by the fact that dnaB(Ts) could readily be introduced into a dnaA(SUZ, Cs) dnaB+ recipient. That is, in the absence of dnaA+, the dnaA suppressor and dnaB(Ts) double mutant was stable. One model to explain these results proposes that the dnaA protein functions not only in initiation but also in the replication complex which contains multiple copies of dnaA and other replication factors.  相似文献   

18.
A New Kind of Informational Suppression in the Nematode Caenorhabditis Elegans   总被引:16,自引:6,他引:10  
J. Hodgkin  A. Papp  R. Pulak  V. Ambros    P. Anderson 《Genetics》1989,123(2):301-313
Independent reversions of mutations affecting three different Caenorhabditis elegans genes have each yielded representatives of the same set of extragenic suppressors. Mutations at any one of six loci act as allele-specific recessive suppressors of certain allels of unc-54 (a myosin heavy chain gene), lin-29 (a heterochronic gene), and tra-2 (a sex determination gene). The same mutations also suppress certain alleles of another sex determination gene, tra-1, and of a morphogenetic gene, dpy-5. In addition to their suppression phenotype, the suppressor mutations cause abnormal morphogenesis of the male bursa and the hermaphrodite vulva. We name these genes smg-1 through smg-6 (suppressor with morphogenetic effect on genitalia), in order to distinguish them from mab (male abnormal) genes that can mutate to produce abnormal genitalia but which do not act as suppressors (smg-1 and smg-2 are new names for two previously described genes, mab-1 and mab-11). The patterns of suppression, and the interactions between the different smg genes, are described and discussed. In general, suppression is recessive and incomplete, and at least some of the suppressed mutations are hypomorphic in nature. A suppressible allele of unc-54 contains a deletion in the 3' noncoding region of the gene; the protein coding region of the gene is apparently unaffected. This suggests that the smg suppressors affect a process other than translation, for example mRNA processing, transport, or stability.  相似文献   

19.
TheNAM2 gene ofSaccharomyces cerevisiae encodes the mitochondrial leucyl tRNA synthetase (mLRS), which is necessary for the excision of the fourth intron of the mitochondrialcytb gene (bI4) and the fourth intron of the mitochondrialcoxI gene (aI4), as well as for mitochondrial protein synthesis. Some dominant mutant alleles of the gene are able to suppress mutations that inactivate the bI4 maturase, which is essential for the excision of the introns aI4 and bI4. Here we report mutagenesis studies which focus on the splicing and suppressor functions of the protein. Small deletions in the C-terminal region of the protein preferentially reduce the splicing, but not the synthetase activity; and all the C-terminal deletions tested abolish the suppressor activity. Mutations which increase the volume of the residue at position 240 in the wild-type mLRS without introducing a charge, lead to a suppressor activity. The mutant 238C, which is located in the suppressor region, has a reduced synthetase activity and no detectable splicing activity. These data show that the splicing and suppressor functions are linked and that the suppressor activity of the mutant alleles results from a modification of the wild-type splicing activity.  相似文献   

20.
The recJ gene encodes a single-strand DNA-specific exonuclease involved in homologous recombination. We have isolated a pseudorevertant strain in which recJ mutant phenotypes were alleviated. Suppression of recJ was due to at least three mutations, two of which we have identified as alterations in DNA helicase genes. A recessive amber mutation, ``uvrD517(am),' at codon 503 of the gene encoding helicase II was sufficient to suppress recJ partially. The uvrD517(am) mutation does not eliminate uvrD function because it affects UV survival only weakly; moreover, a uvrD insertion mutation could not replace uvrD517(am) as a suppressor. However, suppression may result from differential loss of uvrD function: mutation rate in a uvrD517(am) derivative was greatly elevated, equal to that in a uvrD insertion mutant. The second cosuppressor mutation is an allele of the helD gene, encoding DNA helicase IV, and could be replaced by insertion mutations in helD. The identity of the third cosuppressor ``srjD' is not known. Strains carrying the three cosuppressor mutations exhibited hyperrecombinational phenotypes including elevated excision of repeated sequences. To explain recJ suppression, we propose that loss of antirecombinational helicase activity by the suppressor mutations stabilizes recombinational intermediates formed in the absence of recJ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号