首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
UapA, a member of the NAT/NCS2 family, is a high affinity, high capacity, uric acid-xanthine/H+ symporter in Aspergillus nidulans. Determinants critical for substrate binding and transport lie in a highly conserved signature motif downstream from TMS8 and within TMS12. Here we examine the role of TMS1 in UapA biogenesis and function. First, using a mutational analysis, we studied the role of a short motif (Q85H86), conserved in all NATs. Q85 mutants were cryosensitive, decreasing (Q85L, Q85N, Q85E) or abolishing (Q85T) the capacity for purine transport, without affecting physiological substrate binding or expression in the plasma membrane. All H86 mutants showed nearly normal substrate binding affinities but most (H86A, H86K, H86D) were cryosensitive, a phenotype associated with partial ER retention and/or targeting of UapA in small vacuoles. Only mutant H86N showed nearly wild-type function, suggesting that His or Asn residues might act as H donors in interactions affecting UapA topology. Thus, residues Q85 and H86 seem to affect the flexibility of UapA, in a way that affects either transport catalysis per se (Q85), or expression in the plasma membrane (H86). We then examined the role of a transmembrane Leu Repeat (LR) motif present in TMS1 of UapA, but not in other NATs. Mutations replacing Leu with Ala residues altered differentially the binding affinities of xanthine and uric acid, in a temperature-sensitive manner. This result strongly suggested that the presence of L77, L84 and L91 affects the flexibility of UapA substrate binding site, in a way that is necessary for high affinity uric acid transport. A possible role of the LR motif in intramolecular interactions or in UapA dimerization is discussed.  相似文献   

2.
In the UapA uric acid-xanthine permease of Aspergillusnidulans, subtle interactions between key residues of the putative substrate binding pocket, located in the TMS8-TMS9 loop (where TMS is transmembrane segment), and a specificity filter, implicating residues in TMS12 and the TMS1-TMS2 loop, are critical for function and specificity. By using a strain lacking all transporters involved in adenine uptake (ΔazgA ΔfcyB ΔuapC) and carrying a mutation that partially inactivates the UapA specificity filter (F528S), we obtained 28 mutants capable of UapA-mediated growth on adenine. Seventy-two percent of mutants concern replacements of a single residue, R481, in the putative cytoplasmic loop TMS10-TMS11. Five missense mutations are located in TMS9, in TMS10 or in loops TMS1-TMS2 and TMS8-TMS9. Mutations in the latter loops concern residues previously shown to enlarge UapA specificity (Q113L) or to be part of a motif involved in substrate binding (F406Y). In all mutants, the ability of UapA to transport its physiological substrates remains intact, whereas the increased capacity for transport of adenine and other purines seems to be due to the elimination of elements that hinder the translocation of non-physiological substrates through UapA, rather than to an increase in relevant binding affinities. The additive effects of most novel mutations with F528S and allele-specific interactions of mutation R481G (TMS10-TMS11 loop) with Q113L (TMS1-TMS2 loop) or T526M (TMS12) establish specific interdomain synergy as a critical determinant for substrate selection. Our results strongly suggest that distinct domains at both sides of UapA act as selective dynamic gates controlling substrate access to their translocation pathway.  相似文献   

3.
We present a functional analysis of the last alpha-helical transmembrane segment (TMS12) of UapA, a uric acid-xanthine/H+ symporter in Aspergillus nidulans and member of the nucleobase-ascorbate transporter (NAT) family. First, we performed a systematic mutational analysis of residue F528, located in the middle of TMS12, which was known to be critical for UapA specificity. Substitution of F528 with non-aromatic amino acid residues (Ala, Thr, Ser, Gln, Asn) did not affect significantly the kinetics of UapA for its physiological substrates, but allowed high-capacity transport of several novel purines and pyrimidines. Allele-specific combinations of F528 substitutions with mutations in Q408, a residue involved in purine binding, led to an array of UapA molecules with different kinetic and specificity profiles. We propose that F528 plays the role of a novel-type selectivity filter, which, in conjunction with a distinct purine-binding site, control UapA-mediated substrate translocation. We further studied the role of TMS12 by analysing the effect of its precise deletion and chimeric molecules in which TMS12 was substituted with analogous domains from other NATs. The presence of any of the TMS12 tested was necessary for ER-exit while their specific amino acid composition affected the kinetics of chimeras.  相似文献   

4.
Earlier, we identified mutations in the first transmembrane segment (TMS1) of UapA, a uric acid-xanthine transporter in Aspergillus nidulans, that affect its turnover and subcellular localization. Here, we use one of these mutations (H86D) and a novel mutation (I74D) as well as genetic suppressors of them, to show that TMS1 is a key domain for proper folding, trafficking and turnover. Kinetic analysis of mutants further revealed that partial misfolding and deficient trafficking of UapA does not affect its affinity for xanthine transport, but reduces that of uric acid and confers a degree of promiscuity towards the binding of other purines. This result strengthens the idea that subtle interactions among domains not directly involved in substrate binding refine the selectivity of UapA. Characterization of second-site suppressors of H86D revealed a genetic interaction of TMS1 with TMS3, the latter segment shown for the first time to be important for UapA function. Systematic mutational analysis of polar and conserved residues in TMS3 showed that Ser154 is crucial for UapA transport activity. Our results are in agreement with a topological model of UapA built on the recently published structure of UraA, a bacterial homolog of UapA.  相似文献   

5.
UapA, a member of the NAT/NCS2 family, is a high affinity, high capacity, uric acid-xanthine/H+ symporter of Aspergillus nidulans. We have previously presented evidence showing that a highly conserved signature motif ([Q/E/P]408-N-X-G-X-X-X-X-T-[R/K/G])417 is involved in UapA function. Here, we present a systematic mutational analysis of conserved residues in or close to the signature motif of UapA. We show that even the most conservative substitutions of residues Q408, N409 and G411 modify the kinetics and specificity of UapA, without affecting targeting in the plasma membrane. Q408 substitutions show that this residue determines both substrate binding and transport catalysis, possibly via interactions with position N9 of the imidazole ring of purines. Residue N409 is an irreplaceable residue necessary for transport catalysis, but is not involved in substrate binding. Residue G411 determines, indirectly, both the kinetics (K(m), V) and specificity of UapA, probably due to its particular property to confer local flexibility in the binding site of UapA. In silico predictions and a search in structural databases strongly suggest that the first part of the NAT signature motif of UapA (Q(408)NNG(411)) should form a loop, the structure of which is mostly affected by mutations in G411. Finally, substitutions of residues T416 and R417, despite being much better tolerated, can also affect the kinetics or the specificity of UapA. Our results show that the NAT signature motif defines the function of the UapA purine translocation pathway and strongly suggest that this might occur by determining the interactions of UapA with the imidazole part of purines.  相似文献   

6.
Using the crystal structure of the uracil transporter UraA of Escherichia coli, we constructed a 3D model of the Aspergillus nidulans uric acid-xanthine/H(+) symporter UapA, which is a prototype member of the Nucleobase-Ascorbate Transporter (NAT) family. The model consists of 14 transmembrane segments (TMSs) divided into a core and a gate domain, the later being distinctly different from that of UraA. By implementing Molecular Mechanics (MM) simulations and quantitative structure-activity relationship (SAR) approaches, we propose a model for the xanthine-UapA complex where the substrate binding site is formed by the polar side chains of residues E356 (TMS8) and Q408 (TMS10) and the backbones of A407 (TMS10) and F155 (TMS3). In addition, our model shows several polar interactions between TMS1-TMS10, TMS1-TMS3, TMS8-TMS10, which seem critical for UapA transport activity. Using extensive docking calculations we identify a cytoplasm-facing substrate trajectory (D360, A363, G411, T416, R417, V463 and A469) connecting the proposed substrate binding site with the cytoplasm, as well as, a possible outward-facing gate leading towards the substrate major binding site. Most importantly, re-evaluation of the plethora of available and analysis of a number of herein constructed UapA mutations strongly supports the UapA structural model. Furthermore, modeling and docking approaches with mammalian NAT homologues provided a molecular rationale on how specificity in this family of carriers might be determined, and further support the importance of selectivity gates acting independently from the major central substrate binding site.  相似文献   

7.
UapA, a uric acid-xanthine permease of Aspergillus nidulans, has been used as a prototype to study structure-function relationships in the ubiquitous nucleobase-ascorbate transporter (NAT) family. Using novel genetic screens, rational mutational design, chimeric NAT molecules, and extensive transport kinetic analyses, we show that dynamic synergy between three distinct domains, transmembrane segment (TMS)1, the TMS8-9 loop, and TMS12, defines the function and specificity of UapA. The TMS8-9 loop includes four residues absolutely essential for substrate binding and transport (Glu356, Asp388, Gln408, and Asn409), whereas TMS1 and TMS12 seem to control, through steric hindrance or electrostatic repulsion, the differential access of purines to the TMS8-9 domain. Thus, UapA specificity is determined directly by the specific interactions of a given substrate with the TMS8-9 loop and indirectly by interactions of this loop with TMS1 and TMS12. We finally show that intramolecular synergy among UapA domains is highly specific and propose that it forms the basis for the evolution of the unique specificity of UapA for uric acid, a property not present in other NAT members.  相似文献   

8.
UapA, a highly specific uric acid-xanthine transporter in Aspergillus nidulans, is a member of a large family of nucleobase-ascorbate transporters conserved in all domains of life. We have investigated structure-function relationships in UapA, by studying chimeric transporters and missense mutations, and showed that specific polar or charged amino acid residues (E412, E414, Q449, N450, T457) on either side of an amphipathic alpha-helical transmembrane segment (TMS10) are critical for purine binding and transport. Here, the mutant Q449E, having no uric acid-xanthine transport activity at 25 degrees C, was used to isolate second-site revertants that restore function. Seven of them were found to have acquired the capacity to transport novel substrates (hypoxanthine and adenine) in addition to uric acid and xanthine. All seven revertants were found to carry the mutation F569S within the last transmembrane segment (TMS14) of UapA. Further kinetic analysis of a selected suppressor showed that UapA-Q449E/F569S transports with high affinity (K(M) values of 4-10 microM) xanthine, hypoxanthine and uracil. Uptake competition experiments suggested that UapA-Q449E/F569S also binds guanine, 6-thioguanine, adenosine or ascorbic acid. A strain carrying mutation F569S by itself conserves high-capacity, high-affinity (K(M) values of 1.5-15 microM), transport activity for purine-uracil transport. Compared to UapA-Q449E/F569S, UapA-F569S has a distinct capacity to bind several nucleobase-related compounds and different kinetic parameters of transport. These results show that molecular determinants external to the central functional domain (L9-TMS10-L10) are critical for the uptake specificity and transport kinetics of UapA.  相似文献   

9.
Members of the ubiquitous Nucleobase Ascorbate Transporter (NAT) family are H+ or Na+ symporters specific for the cellular uptake of either purines and pyrimidines or L-ascorbic acid. Despite the fact that several bacterial and fungal members have been extensively characterised at a genetic, biochemical or cellular level, and crystal structures of NAT members from Escherichia coli and Aspergillus nidulans have been determined pointing to a mechanism of transport, we have little insight on how substrate selectivity is determined. Here, we present systematic mutational analyses, rational combination of mutations, and novel genetic screens that reveal cryptic context-dependent roles of partially conserved residues in the so-called NAT signature motif in determining the specificity of the UapA transporter of A. nidulans. We show that specific NAT signature motif substitutions, alone and in combinations with each other or with distant mutations in residues known to affect substrate selectivity, lead to novel UapA versions possessing variable transport capacities and specificities for nucleobases. In particular, we show that a UapA version including the quadruple mutation T405S/F406Y/A407S/Q408E in the NAT signature motif (UapA-SYSE) becomes incapable of purine transport, but gains a novel pyrimidine-related profile, which can be further altered to a more promiscuous purine/pyrimidine profile when combined with replacements at distantly located residues, especially at F528. Our results reveal that UapA specificity is genetically highly modifiable and allow us to speculate on how the elevator-type mechanism of transport might account for this flexibility.  相似文献   

10.
Specific carrier-mediated transport of purine and pyrimidine nucleobases across cell membranes is a basic biological process in both prokaryotes and eukaryotes. Recent in silico analysis has shown that the Aspergillus nidulans (UapA, UapC) and bacterial (PbuX, UraA, PyrP) nucleobase transporters, and a group of mammalian L-ascorbic acid transporters (SVCT1 and SVCT2), constitute a unique protein family which includes putative homologues from archea, bacteria, plants and metazoans. The construction and functional analysis of chimeric purine transporters (UapA-U apC) and UapA-specific missense mutations in A. nidulans has previously shown that the region including amino acid residues 378-446 in UapA is critical for purine recognition and transport. Here, we extend our studies on UapA structure-function relationships by studying missense mutations constructed within a `signature' sequence motif [(F/Y/S)X(Q/E/P)N XGXXXXT(K/R/G)] which is conserved in the putative functional region of all members of the nucleobase/ascorbate transporter family. Residues Q449 and N450 were found to be critical for purine recognition and transport. The results suggest that these residues might directly or indirectly be involved in specific interactions with the purine ring. In particular, interaction of residue 449 with C-2 groups of purines might act as a critical molecular filter involved in the selection of transported substrates. The present and previous mutagenic analyses in UapA suggest that specific polar or charged amino acid residues on either side of an amphipathic a-helical transmembrane segment are critical for purine binding and transport.  相似文献   

11.
In Aspergillus nidulans UapA is a H+-driven transporter specific for xanthine, uric acid and several analogues. Here, genetic and physiological evidence is provided showing that allopurinol is a high-affinity, low-capacity, substrate for UapA. Surprisingly however, transport kinetic measurements showed that, uniquely among all recognized UapA substrates, allopurinol is transported by apparent facilitated diffusion and exhibits a paradoxical effect on the transport of physiological substrates. Specifically, excess xanthine or other UapA substrates inhibit allopurinol uptake, as expected, but the presence of excess allopurinol results in a concentration-dependent enhancement of xanthine binding and transport. Flexible docking approaches failed to detect allopurinol binding in the major UapA substrate binding site, which was recently identified by mutational analysis and substrate docking using all other UapA substrates. These results and genetic evidence suggest that the allopurinol translocation pathway is distinct from, but probably overlapping with, that of physiological UapA substrates. Furthermore, although the stimulating effect of allopurinol on xanthine transport could, in principle, be rationalized by a cryptic allopurinol-specific allosteric site, evidence was obtained supporting that accelerated influx of xanthine is triggered through exchange with cytoplasmically accumulated allopurinol. Our results are in line with recently accumulating evidence revealing atypical and complex mechanisms underlying transport systems.  相似文献   

12.
Specific carrier-mediated transport of purine and pyrimidine nucleobases across cell membranes is a basic biological process in both prokaryotes and eukaryotes. Recent in silico analysis has shown that the Aspergillus nidulans (UapA, UapC) and bacterial (PbuX, UraA, PyrP) nucleobase transporters, and a group of mammalian L-ascorbic acid transporters (SVCT1 and SVCT2), constitute a unique protein family which includes putative homologues from archea, bacteria, plants and metazoans. The construction and functional analysis of chimeric purine transporters (UapA-UapC) and UapA-specific missense mutations in A. nidulans has previously shown that the region including amino acid residues 378-446 in UapA is critical for purine recognition and transport. Here, we extend our studies on UapA structure-function relationships by studying missense mutations constructed within a 'signature' sequence motif [(F/Y/S)X(Q/E/P)NXGXXXXT(K/R/G)] which is conserved in the putative functional region of all members of the nucleobase/ascorbate transporter family. Residues Q449 and N450 were found to be critical for purine recognition and transport. The results suggest that these residues might directly or indirectly be involved in specific interactions with the purine ring. In particular, interaction of residue 449 with C-2 groups of purines might act as a critical molecular filter involved in the selection of transported substrates. The present and previous mutagenic analyses in UapA suggest that specific polar or charged amino acid residues on either side of an amphipathic alpha-helical transmembrane segment are critical for purine binding and transport.  相似文献   

13.
In Aspergillus nidulans, purine uptake is mediated by three transporter proteins: UapA, UapC and AzgA. UapA and UapC have partially overlapping functions, are 62% identical and have nearly identical predicted topologies. Their structural similarity is associated with overlapping substrate specificities; UapA is a high-affinity, high-capacity specific xanthine/uric acid transporter. UapC is a low/moderate-capacity general purine transporter. We constructed and characterized UapA/UapC, UapC/UapA and UapA/UapC/UapA chimeric proteins and UapA point mutations. The region including residues 378-446 in UapA (336-404 in UapC) has been shown to be critical for purine recognition and transport. Within this region, we identified: (i) one amino acid residue (A404) important for transporter function but probably not for specificity and two residues (E412 and R414) important for UapA function and specificity; and (ii) a sequence, (F/Y/S)X(Q/E/P) NXGXXXXT(K/R/G), which is highly conserved in all homologues of nucleobase transporters from bacteria to man. The UapC/UapA series of chimeras behaves in a linear pattern and leads to an univocal assignment of functional domains while the analysis of the reciprocal and 'sandwich' chimeras revealed unexpected inter-domain interactions. cDNAs coding for transporters including the specificity region defined by these studies have been identified for the first time in the human and Caenorhabditis elegans databases.  相似文献   

14.
De Jesus M  Jin J  Guffanti AA  Krulwich TA 《Biochemistry》2005,44(38):12896-12904
Proline and glycine residues are well represented among functionally important residues in hydrophobic domains of membrane transport proteins, and several critical roles have been suggested for them. Here, the effects of mutational changes in membrane-embedded proline and glycine residues of Tet(L) were examined, with a focus on the conserved GP(155,156) dipeptide of motif C, a putative "antiporter motif". Mutation of Gly155 to cysteine resulted in a mutant Tet(L) that bound its tetracycline-divalent metal (Tc-Me2+) substrate but did not catalyze efflux or exchange of Tc-Me2+ or catalyze uptake or exchange of Rb+ which was used to monitor the coupling ion. These results support suggestions that this region is involved in the conformational changes required for translocation. Mutations in Pro156 resulted in reduction (P156G) or loss (P156A or P156C) of Tc-Me2+ efflux capacity. All three Pro156 mutants exhibited a K+ leak (monitored by 86Rb+ fluxes) that was not observed in wild-type Tet(L). A similar leak was observed in a mutant in a membrane-embedded proline residue elsewhere in the Tet(L) protein (P175C) as well as in a P156C mutant of related antiporter Tet(K). These findings are consistent with roles proposed for membrane-embedded prolines in tight helix packing. Patterns of Tc resistance conferred by additional Tet(L) mutants indicate important roles for another GP dipeptide in transmembrane segment (TMS) X as well as for membrane-embedded glycine residues in TMS XIII.  相似文献   

15.
Previous mutational analysis of Jen1p, a Saccharomyces cerevisiae monocarboxylate/H+ symporter of the Major Facilitator Superfamily, has suggested that the consensus sequence 379NXX[S/T]HX[S/T]QD387 in transmembrane segment VII (TMS‐VII) is part of the substrate translocation pathway. Here, we rationally design, analyse and show that several novel mutations in TMS‐V and TMS‐XI directly modify Jen1p function. Among the residues studied, F270 (TMS‐V) and Q498 (TMS‐XI) are critical specificity determinants for the distinction of mono‐ from dicarboxylates, and N501 (TMS‐XI) is a critical residue for function. Using a model created on the basis of Jen1p similarity with the GlpT permease, we show that all polar residues critical for function within TMS‐VII and TMS‐XI (N379, H383, D387, Q498, N501) are perfectly aligned in an imaginary axis that lies parallel to the protein pore. This model and subsequent mutational analysis further reveal that an additional polar residue facing the pore, R188 (TMS‐II), is irreplaceable for function. Our model also justifies the role of F270 and Q498 in substrate specificity. Finally, docking calculations reveal a ‘trajectory‐like’ substrate displacement within the Jen1p pore, where R188 plays a major dynamic role mediating the orderly relocation of the substrate by subsequent H‐bond interactions involving itself and residues H383, N501 and Q498.  相似文献   

16.
The recent elucidation of crystal structures of a bacterial member of the NCS1 family, the Mhp1 benzyl-hydantoin permease from Microbacterium liquefaciens, allowed us to construct and validate a three-dimensional model of the Aspergillus nidulans purine-cytosine/H+ FcyB symporter. The model consists of 12 transmembrane α-helical, segments (TMSs) and cytoplasmic N- and C-tails. A distinct core of 10 TMSs is made of two intertwined inverted repeats (TMS1–5 and TMS6–10) that are followed by two additional TMSs. TMS1, TMS3, TMS6, and TMS8 form an open cavity that is predicted to host the substrate binding site. Based on primary sequence alignment, three-dimensional topology, and substrate docking, we identified five residues as potentially essential for substrate binding in FcyB; Ser-85 (TMS1), Trp-159, Asn-163 (TMS3), Trp-259 (TMS6), and Asn-354 (TMS8). To validate the role of these and other putatively critical residues, we performed a systematic functional analysis of relevant mutants. We show that the proposed substrate binding residues, plus Asn-350, Asn-351, and Pro-353 are irreplaceable for FcyB function. Among these residues, Ser-85, Asn-163, Asn-350, Asn-351, and Asn-354 are critical for determining the substrate binding affinity and/or the specificity of FcyB. Our results suggest that Ser-85, Asn-163, and Asn-354 directly interact with substrates, Trp-159 and Trp-259 stabilize binding through π-π stacking interactions, and Pro-353 affects the local architecture of substrate binding site, whereas Asn-350 and Asn-351 probably affect substrate binding indirectly. Our work is the first systematic approach to address structure-function-specificity relationships in a eukaryotic member of NCS1 family by combining genetic and computational approaches.  相似文献   

17.
The mitochondrial oxoglutarate carrier (OGC) plays an important role in the malate-aspartate shuttle, the oxoglutarate-isocitrate shuttle and gluconeogenesis. To establish amino acid residues that are important for function, each residue in the transmembrane alpha-helices H1, H3 and H5 was replaced systematically by a cysteine in a fully functional mutant carrier that was devoid of cysteine residues. The transport activity of the mutant carriers was measured in the presence and absence of sulfhydryl reagents. The observed effects were rationalized by using a comparative structural model of the OGC. Most of the residues that are critical for function are found at the bottom of the cavity and they belong to the signature motifs P-X-[DE]-X-X-[KR] that form a network of three inter-helical salt bridges that close the carrier at the matrix side. The OGC deviates from most other carriers, because it has a conserved leucine (L144) rather than a positively charged residue in the signature motif of the second repeat and thus the salt bridge network is lacking one salt bridge. Incomplete salt-bridge networks due to hydrophobic, aromatic or polar substitutions are observed in other dicarboxylate, phosphate and adenine nucleotide transporters. The interaction between the carrier and the substrate has to provide the activation energy to trigger the re-arrangement of the salt-bridge network and other structural changes required for substrate translocation. For substrates such as malate, which has only two carboxylic and one hydroxyl group, a reduction in the number of salt bridges in the network may be required to lower the energy barrier for translocation. Another group of key residues, consisting of T36, A134, and T233, is close to the putative substrate binding site and substitutions or modifications of these residues may interfere with substrate binding and ion coupling. Residues G32, A35, Q40, G130, G133, A134, G230, and S237 are potentially engaged in inter-helical interactions and they may be involved in the movements of the alpha-helices during translocation.  相似文献   

18.
Abstract

Despite detailed genetic and mutagenic analysis and a recent high-resolution structure of a bacterial member of the nucleobase-ascorbate transporter (NAT) family, understanding of the mechanism of action of eukaryotic NATs is limited. Preliminary studies successfully expressed and purified wild-type UapA to high homogeneity; however, the protein was extremely unstable, degrading almost completely after 48 h at 4°C. In an attempt to increase UapA stability we generated a number of single point mutants (E356D, E356Q, N409A, N409D, Q408E and G411V) previously shown to have reduced or no transport activity, but correct targeting to the membrane. The mutant UapA constructs expressed well as GFP fusions in Saccharomyces cerevisiae and exhibited similar fluorescent size exclusion chromatography (FSEC) profiles to the wild-type protein, following solubilization in 1% DDM, LDAO or OM + 1 mM xanthine. In order to assess the relative stabilities of the mutants, solubilized fractions prepared in 1% DDM + 1 mM xanthine were heated at 45°C for 10 min prior to FSEC. The Q408E and G411V mutants gave markedly better profiles than either wild-type or the other mutants. Further FSEC analysis following solubilization of the mutants in 1% NG ± xanthine confirmed that G411V is more stable than the other mutants, but showed that Q408E is unstable under these conditions. G411V and an N-terminally truncated construct G411VΔ1-11 were submitted to large-scale expression and purification. Long-term stability analysis revealed that G411VΔ1-11 was the most stable construct and the most suited to downstream structural studies.  相似文献   

19.
In Saccharomyces cerevisiae Jen1p is a lactate/proton symporter belonging to the lactate/pyruvate:H(+) symporter subfamily (TC#2.A.1.12.2) of the Major Facilitator Superfamily. We investigated structure-function relationships of Jen1p using a rational mutational analysis based on the identification of conserved amino acid residues. In particular, we studied the conserved sequence (379)NXX[S/T]HX[S/T]QDXXXT(391). Substitution of amino acid residues N379, H383 or D387, even with very similar amino acids, resulted in a dramatic reduction of lactate and pyruvate uptake, but conserved measurable acetate transport. Acetate transport inhibition assays showed that these mutants conserve the ability to bind, but do not transport, lactate and pyruvate. More interestingly, the double mutation H383D/D387H, while behaving as a total loss-of-function allele for lactate and pyruvate uptake, can fully restore the kinetic parameters of Jen1p for acetate transport. Thus, residues N379, H383 or D387 affect both the transport capacity and the specificity of Jen1p. Substitutions of Q386 and T391 resulted in no or moderate changes in Jen1p transport capacities for lactate, pyruvate and acetate. On the other hand, Q386N reduces the binding affinities for all Jen1p substrates, while Q386A increases the affinity specifically for pyruvate. We also tested Jen1p specificity for a range of monocarboxylates. Several of the mutants studied showed altered inhibition constants for these acids. These results and 3D in silico modelling by homology threading suggest that the conserved motif analyzed is part of the substrate translocation pathway in the lactate/pyruvate:H(+) symporter subfamily.  相似文献   

20.
The biological properties of the nonclassical class I MHC molecules secreted into blood and tissue fluids are not currently understood. To address this issue, we studied the murine Q10 molecule, one of the most abundant, soluble class Ib molecules. Mass spectrometry analyses of hybrid Q10 polypeptides revealed that alpha1alpha2 domains of Q10 associate with 8-9 long peptides similar to the classical class I MHC ligands. Several of the sequenced peptides matched intracellularly synthesized murine proteins. This finding and the observation that the Q10 hybrid assembly is TAP2-dependent supports the notion that Q10 groove is loaded by the classical class I Ag presentation pathway. Peptides eluted from Q10 displayed a binding motif typical of H-2K, D, and L ligands. They carried conserved residues at P2 (Gly), P6 (Leu), and Pomega (Phe/Leu). The role of these residues as anchors/auxiliary anchors was confirmed by Ala substitution experiments. The Q10 peptide repertoire was heterogeneous, with 75% of the groove occupied by a multitude of diverse peptides; however, 25% of the molecules bound a single peptide identical to a region of a TCR V beta-chain. Since this peptide did not display enhanced binding affinity for Q10 nor does its origin and sequence suggest that it is functionally significant, we propose that the nonclassical class I groove of Q10 resembles H-2K, D, and L grooves more than the highly specialized clefts of nonclassical class I Ags such as Qa-1, HLA-E, and M3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号