首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The activity of DNA polymerase I from Saccharomyces cerevisiae is inhibited, in a dose-dependent fashion, by the oncogenic beta-blocker 1-(2-nitro-3-methyl-phenoxy)-3-tert-butylamino-propan-2-ol (ZAMI 1305) and by the non-oncogenic beta-blockers 1-(2-nitro-5-methyl-phenoxy)-3-tert-butylamino-propan-2-ol (ZAMI 1327), atenolol, and propranolol, the latter having the highest inhibiting activity. The inhibition is due to an interaction of the beta-blockers with the free enzyme and with the enzyme-DNA complex. The degree of inhibition is directly related to the hydrophobicity of the aromatic moiety and to the length and hydrophilicity of the aliphatic chain of the inhibitor. No relation seems to exist between the in vitro inhibition of yeast DNA polymerase I by beta-blockers and their oncogenic activity.  相似文献   

4.
Human cytomegalovirus DNA. I. Molecular weight and infectivity.   总被引:9,自引:20,他引:9       下载免费PDF全文
Human cytomegalovirus DNA (strain AD 169) was isolated from purified virions and further purified by sucrose density gradient centrifugation. The viral DNA molecules were studied by electron microscopy and found to be linear and to have a length of 76.22 +/- 5.22 micron, corresponding to a molecular weight of 147 +/- 6.2 x 10(6). The DNA was infectious when tested in human embryonic lung cells.  相似文献   

5.
Ultraviolet irradiation of DNA results in various pyrimidine modifications. We have demonstrated formation of both cis-thymine hydrate and trans-thymine hydrate (6-hydroxy-5,6-dihydrothymine) in UV-irradiated poly(dA-dT):poly(dA-dT). Both are released from DNA as free bases by bacterial and human glycosylases. Thymine hydrates are stable in DNA and can be detected in control, unirradiated substrates. We examined the effects of thymine hydrates in UV-irradiated substrate poly(dA-dT):poly(dA-dT) on E. coli DNA polymerase I activity. Enzymic incorporation of labeled thymidine-5'-monophosphate significantly decreased with increasing UV dose. Reversal of DNA thymine hydrates to thymines by mild heating of the substrate prior to enzymic reaction resulted in partial recovery of nucleotide incorporation. Cyclobutane thymine dimers are formed between non-adjacent thymines in UV-irradiated poly(dA-dT):poly(dA-dT). These are responsible for the incomplete recovery of DNA polymerase activity following heating due to their heat stability. Analyses of the irradiated and hydrolyzed substrate also demonstrated formation of minor yields of photoproducts formed by covalent linkage of adjacent thymines and adenines by UV-irradiation. Therefore, the thymine hydrates formed in UV-irradiated DNA partially inhibit polymerase activity during DNA synthesis and thus could be potentially lethal if unrepaired.  相似文献   

6.
7.
Inhibition of E. coli DNA polymerase I by 1,10-phenanthroline.   总被引:1,自引:0,他引:1  
A 1,10-phenanthroline-cuprous ion complex is a potent reversible inhibitor of E. coli DNA polymerase I yielding 50% inhibition in the micromolar concentration range. The 2:1 1,10-phenanthroline-cuprous ion complex is most probably the inhibitory species. Complexes of cupric ion and 1,10-phenanthroline have no apparent kinetic effect. The previously reported inhibition of the enzyme by 1,10-phenanthroline (1,2) is most likely due to the formation of this complex from thiols normally added to the assay mixtures and trace amounts of cupric ion invariably present notwithstanding reasonable precaution. The reversible and instantaneous 1,10-phenanthroline inhibition observed for other polymerases may be due to this unique inhibitory species and not coordination of a catalytically important zinc ion at the active site by the chelating agent.  相似文献   

8.
Caffeine was found to inhibit RNA-dependent DNA polymerase activity of Rauscher leukemia virus when endogenous viral RNA and poly(rA)·(dT)12–18 were used as templates. Similar results were also obtained with purified RNA-dependent DNA polymerase (deoxynucleoside triphosphate; DNA nucleotidyl transferase; EC 2.7.7.7) from avian myeloblastosis virus (AMV) utilizing 70S and 35S RNA of AMV, poly(rA)·(dT)12–18, globin mRNA and activated calf thymus DNA as templates. The “caffeine effect” was evident only when it was present during the initiation of polymerization reaction. Increasing the template concentration in the reaction mixture partly reversed the effect of caffeine. Of the analogs of caffeine tested, only theophylline inhibited AMV DNA polymerase, whereas aminophylline showed no effect.  相似文献   

9.
10.
Inhibition of HeLa cell DNA topoisomerase I by ATP and phosphate.   总被引:3,自引:0,他引:3       下载免费PDF全文
The relaxation activity of DNA topoisomerase I from HeLa cell nuclei is strongly inhibited by a variety of purine nucleotides in the presence but not absence of 1 mM potassium phosphate. For ATP, 3-4 mM causes nearly complete inhibition. The 2'-and 3'-AMP isomer are active as well in the presence of 1 mM phosphate, but the 5'-AMP isomer and adenosine are inert. At 3 mM ATP, the titration curve for phosphate is sigmoidal with inhibition beginning abruptly at about 0.5 mM. The negatively-supercoiled DNA isolated from an "inhibited" reaction is relaxed as well as the standard DNA template in the absence of ATP and phosphate suggesting that inhibition does not result from an alteration of the template which protects against its relaxation. Relaxation of positively-supercoiled DNA is also inhibited. Catalysis by E. coli DNA topoisomerase I and HeLa DNA topoisomerase II is not inhibited at concentrations of ATP and phosphate sufficient to cause 80-90% inhibition of HeLa type 1 enzyme.  相似文献   

11.
Methyl methanesulfonate (MMS) inhibits both thymidine incorporation into DNA in mitogen-activated human lymphocytes and deoxythymidine triphosphate incorporation into template DNA by DNA polymerase-alpha in a cell-free system. When MMS-modified DNA was used as the template for DNA synthesis utilizing unmodified DNA polymerase-alpha, nucleotide incorporation into template DNA was not inhibited. When unmodified DNA was used as the template for DNA synthesis utilizing MMS-modified DNA polymerase-alpha, nucleotide incorporation was differentially inhibited dependent on the MMS concentration. An analysis of the kinetics of DNA polymerase-alpha inhibition showed that incorporation of all 4 deoxynucleoside triphosphates into DNA template was noncompetitively inhibited by MMS, which is consistent with nonspecific MMS modification of the enzyme. These data indicate that MMS modification of DNA polymerase-alpha alone is sufficient to inhibit the incorporation of deoxynucleoside triphosphates into template DNA in vitro. The data further indicate that alkylation of both DNA polymerase-alpha and DNA template synergistically increases inhibition of DNA synthesis.  相似文献   

12.
Novel biological activities of a fullerene-oligonucleotide conjugate (FONC) were examined in the present report. A new FONC containing a complementary sequence to a specific region of the beta-actin cDNA was synthesized. We found that the FONC at a low concentration (10(-6)M) could specifically inhibit PCR-amplification of the beta-actin cDNA by inhibiting the activities of both Taq DNA polymerase and the cDNA template. This inhibition appeared to be mediated by reactive oxygen species (ROS). The FONC also exhibited the ability of antagonizing the enzymatic activity of an engineered nuclease, exonuclease I (Exo I). Our data provided some valuable evidences on the prospective use of FONC in the antisense strategy for gene silencing.  相似文献   

13.
14.
15.
Glutamate racemase (MurI) catalyzes the interconversion of l-glutamate to d-glutamate, one of the essential amino acids present in the peptidoglycan. In addition to this essential enzymatic function, MurI from Escherichia coli, Bacillus subtilis and Mycobacterium tuberculosis inhibit DNA gyrase activity. A single gene for murI found in the Mycobacterium smegmatis genome was cloned and overexpressed in a homologous expression system to obtain a highly soluble enzyme. In addition to the racemization activity, M. smegmatis MurI inhibits DNA gyrase activity by preventing DNA binding of gyrase. The sequestration of the gyrase by MurI results in inhibition of all reactions catalyzed by DNA gyrase. More importantly, MurI overexpression in vivo in mycobacterial cells provides protection against the action of ciprofloxacin. The DNA gyrase-inhibitory property thus appears to be a typical characteristic of MurI and would have probably evolved to either modulate the function of the essential housekeeping enzyme or to provide protection to gyrase against gyrase inhibitors, which cause double-strand breaks in the genome.  相似文献   

16.
17.
18.
19.
20.
Streptomycin inhibits the propagation of the f2, μ2 and fd phages in streptomycin-resistant cells. Similarly the propagation of the phage in streptomycin-sensitive cells is inhibited under conditions when neither growth or protein synthesis are affected, i.e. at a concentration of 5μg/ml. and after a five-minute exposure. The average burst size is reduced by 60–80%. The latency period is prolonged and burst size also reduced in a single-step experiment. The inhibitory effect in the resistant host depends on the concentration of streptomycin, time of exposure and on the strain of the host bacterium. If streptomycin is present throughout the reproduction cycle the inhibitory effect is highest. At concentrations exceeding 200 μg./ml. streptomycin reduces the titre of phage lysates through precipitation of the phage particles. The inhibitory effect of streptomycin is blocked by sodium polymethacrylate, spermine, deoxyribo-nucleic acid and adenylic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号