首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
? Premise of the study: Despite their highly reduced morphology, Hydatellaceae bear the unmistakable embryological signature of Nymphaeales, including a starch-rich maternal perisperm and a minute biparental endosperm and embryo. The co-occurrence of perisperm and endosperm in Nymphaeales and other lineages of flowering plants, and their respective functions during the course of seed development and embryo germination, remain enigmatic. ? Methods: Development of the embryo, endosperm, and perisperm was examined histologically from fertilization through germination in flowers and fruits of Trithuria submersa. ? Key results: The embryo of T. submersa initiates two cotyledons prior to seed maturity/dormancy, and their tips remain in contact with the endosperm throughout germination. The endosperm persists as a single layer of cells and serves as the interface between the embryo and the perisperm. The perisperm contains carbohydrates and proteins, and functions as the main storage tissue. The endosperm accumulates proteins and aleurone grains and functions as a transfer cell layer. ? Conclusions: In Nymphaeales, the multiple roles of a more typical endosperm have been separated into two different tissues and genetic entities: a maternal perisperm (nutrient acquisition, storage, mobilization) and a minute biparental endosperm (nutrient transfer to the embryo). The presence of perisperms among several other ancient lineages of angiosperms suggests a modest degree of developmental and functional lability for the nutrient storage tissue (perisperm or endosperm) within seeds during the early evolution of flowering plants. Finally, we examine the evolutionary developmental hypothesis that, contrary to longstanding assumptions, an embryo-nourishing perisperm along with a minute endosperm may represent the plesiomorphic condition for flowering plants.  相似文献   

2.
3.
Ovules of broad bean (Vicia faba L.) were studied to discloseultrastructural features, which can facilitate nutrient transportto the embryo sac from 10 d after pollination (DAP) to the matureseed. Fertilization occurs during the first 24 h after pollination.The endosperm is a coenocyte, which is eventually consumed bythe embryo. By 10 DAP the inner integument is degraded and theouter integument adjoins the embryo sac boundary. The heart-shapedembryo approaches the embryo sac boundary at two sites, whichhere are named contact zones. Small integument cells in theneighbourhood of the first formed contact zones become separatedby prominent intercellular spaces. A heterogenous scatteringmaterial, probably representing secretion products accumulatesin these spaces. By 14-16 DAP the integument exudate disappears,and the suspensor degenerates. As the contact zones increasein size, wall ingrowths form a bridging network in the narrowspace between the embryo sac boundary and the extra-embryonicpart of the endosperm wall. The epidermal cells of the embryoseparate adjacent to these zones, and develop conspicuous wallingrowths. At 20 DAP vacuoles showing various stages in formationof protein bodies appear in the cells of the embryo.Copyright1994, 1999 Academic Press Vicia faba, broad beans, ovule, seed, nutrient transport  相似文献   

4.
Original scanning electron microscopy (SEM) observations are presented for stems of Brasenia schreberi and Cabomba caroliniana of Cabombaceae and three species of Trithuria of Hydatellaceae. End walls of stem tracheids of Brasenia have the same peculiar microstructure that we have reported in Barclaya, Euryale, Nuphar, Nymphaea (including Ondinea) and Victoria of Nymphaeaceae. This feature unites Cabombaceae with Nymphaeaceae. The minute rhomboidal crystals on the surfaces of stellate parenchyma cells of Brasenia reported by Solereder (1906. Oxford: University Press), but not noticed since, are figured. They are like the minute crystals of the often‐mentioned astrosclereids of Nymphaeaceae. Neither of these two features has been observed in Hydatellaceae. If the absence of these two features can be confirmed, the reason may be more related to ecology, development, habit and anatomical organization than to degree of phylogenetic relationship as shown by molecular studies. Anatomical observations on the stem anatomy of Trithuria are offered on the basis of paraffin sections prepared for a paper by Cheadle & Kosakai (1975. American Journal of Botany 62: 1017–1026); that study is notable for a discrepancy between an illustration of a specialized vessel element on the one hand and tabular data indicating long scalariform perforation plates on the other. Long scalariform perforation plates are mostly found in scalariformly pitted vessels of monocots, whereas the tracheary elements of Trithuria mostly have helical or annular thickenings. We were unable to demonstrate the presence of vessels in Hydatellaceae. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 159 , 572–582.  相似文献   

5.
Embryo sac development in ‘Nonpareil’ almond wasstudied following cross-, self- and non-pollination under fieldand greenhouse conditions. The embryo sac, which develops accordingto the Polygonum type, does not begin to differentiate untilanthesis in contrast to other Prunus spp. where a well-developedembryo sac is present at the time of flower opening. The developingmegagametophyte appears to be isolated from surrounding nucellartissue by the deposition of a ring of callose, which, as indicatedby aniline blue-induced fluorescence in the walls of nucellarcells, encloses the embryo sac during its elongation. Developmentand growth of the embryo sac following the different pollinationtreatments indicated that embryo sac development was stimulatedby the presence of compatible pollen tubes in the style andfinal elongation growth of the embryo sac was promoted by cross-pollination.Irregularities in megagametophyte development, including delayeddifferentiation of the megaspore mother cell, embryo sac abortionand lack of polar nuclei fusion and embryo sac elongation, werefrequently noted in ovules of self- and non-pollinated flowers. Almond, callose, embryo sac, megagametophyte, pollination, Prunus dulcis (Mill.) D. A. Webb.  相似文献   

6.
Fruit Development and Structure in Some Indian Bamboos   总被引:2,自引:0,他引:2  
Fruit structure and development of seven species belonging tofive genera of Indian bamboos are described. The fruit in fourspecies is a caryopsis typical of the family Poaceae. The ovuleis bitegmic; the outer surface of the cells of nucellar epidermisbecomes cutinized and forms the seed coat. Three species beara fleshy fruit with a unitegmic ovule. In a mature fruit theendosperm is either completely absorbed by the embryo or ispresent only in small quantity. The developing embryo comesin direct contact with the fruit wall due to the disintegrationof the nucellus and integument. The embryo is covered by a thickbrown mat from the disorganized cells of the inner layers ofthe fruit wall. Poaceae, Bambusoideae, Bambusa, Dendrocalamus, Melocalamus, Ochlandra, Pseudostachyum (fleshy fruits), fruit wall  相似文献   

7.
TEM investigation of sieve-element plastids in three species of Trithuria, the sole genus of the small aquatic family Hydatellaceae, show that P-type plastids are absent from this genus and only starch-accumulating (S-type) sieve-element plastids are present. This discovery is consistent with the recent transfer of Hydatellaceae from the highly derived monocot order Poales (grasses and their allies) to the early-divergent angiosperm order Nymphaeales (waterlilies) based on molecular phylogenetic data. Species of Poales consistently possess P2-subtype plastids, in common with other monocots, but only S-type plastids are present in Nymphaeales. The results confirm that Hydatellaceae do not belong in monocots. Optimisation of the two major types of sieve-element plastid onto a recent phylogeny of early-divergent angiosperms confirms that S-type is the primitive form and indicates that P-type sieve-element plastids have evolved more than once in angiosperms.  相似文献   

8.
DUNCAN  E. J. 《Annals of botany》1970,34(3):677-683
Ontogeny of the ovule and development of the embryo in Bombacopsisglabra (Pasq.) A. Robyns were examined. The ovule is bitegmic,crassinucellate, and anatropous. The exostome is eccentric relativeto the endostome; stomata occur on the outer integument. Thesingle archesporial cell functions directly as the megasporemother cell. The embryo-sac is bisporic. The organization ofthe nuclei in the mature embryo-sac is normal. The antipodalcells disintegrate soon after formation. Double fertilization takes place; the zygote undergoes a longperiod of dormancy, but the primary endosperm nucleus dividesimmediately to produce first a nuclear-type, later a cellular-typeendosperm. The zygote is of the caryophyllad type. Adventive embryos arise from single cells of the nucellus inthe vicinity of the micropyle, and develop faster than the sexuallyproduced embryo; this leads to anomictic renroduction.  相似文献   

9.
The embryology ofStegnosperma halimifolium andS. watsonii has been studied in detail. The tapetum is of the secretory type and its cells become multinucleate. Simultaneous cytokinesis in the pollen mother cells follows meiosis. The ripe pollen grains are 3-celled. The ovule is crassinucellate, bitegmic and amphitropous, with the micropyle formed by the inner integument alone. The female archesporium is one celled, and the parietal tissue 3–5 layered. The embryo sac development conforms to thePolygonum type. A central strand, 6 or 7 cells thick, differentiates inside the nucellus and extends from the base of the embryo sac to the chalazal region. The endosperm is nuclear. The embryogeny conforms to the Caryophyllad type. The seed coat is formed by the outer epidermis of the outer integument and the inner epidermis of the inner integument. Based on this evidence and other data, the status of the genus as an independent family,Stegnospermataceae (Stegnospermaceae) is confirmed. Apparently, it forms a connecting link betweenPhytolaccaceae andCaryophyllaceae.  相似文献   

10.
小草蔻胚珠及雌配子体发育的研究   总被引:1,自引:0,他引:1  
小草蔻(Alpinia henryi K.Schum)胚胎倒生,厚珠心,双珠被。内珠被独自成珠孔。造孢细胞,大孢子母细胞和四体时期,周缘细胞仅1层。四分体线形,少数三分体。合点在孢子具功能。成熟胚珠具有珠心冠原和承珠盘结构。胚囊发育属蓼型。成熟胚整,合点端狭长,形成盲囊。反足核不能构成细胞,是短命的。膜质假种皮的原基从外珠被和珠柄发生。  相似文献   

11.
After removal of the embryo from developing seeds of Vicia fabaL. and Pisum sativum L., the ‘empty’ ovules werefilled with a standard solution (pH 5.5). Seed coat exudatesof both species were collected during relatively long experiments(up to about 12 h) and the concentration of sugar (mainly sucrose),amino acids and phosphate in the exudate measured. A discussionis presented on the amino acid/sugar ratio and the phosphate/sugarratio in the seed coat exudate. A pretreatment (15 min) withp-chloromercuribenzenesulphonic acid (PCMBS) reduced the releaseof sugar, amino acids and phosphate from broad bean seed coats.After excision of ‘empty’ ovules of Vicia faba andPisum sativum from the maternal plant, 2–4 h after thistreatment a strong difference became visible between sucroserelease from excised seed coats and sucrose release from attachedseed coats. Similarly, when the rate of phloem transport ofsucrose into an ‘empty’ ovule of Vicia faba or Pisumsativum was reduced by a sub-optimal mannitol concentrationin the solution, a reduced rate of sugar release from the seedcoat could be observed. Excision and treatment with a sub-optimalmannitol concentration reduced the release of amino acids toa lesser extent than for sucrose. These treatments did not reducethe rate of phosphate release from the seed coat. Key words: Seed development, Seed coat exudate, Phloem transport  相似文献   

12.
The embryological characteristics and ovular integument development of the dioecious species Woonyoungia septentrionalis (Dandy) Law (Magnoliaceae), which are poorly understood, were investigated under laser scanning confocal microscope (LSCM) and light microscope (LM). The embryological characteristics conform to most of the previously studied species in Magnoliaceae. The anther has 4 microsporangia, and the anther wall develops according to the dicotyledonous type. Cytokinesis at meiosis of the microspore mother cells follows a modified simultaneous type, giving rise to isobilateral or decussate tetrads, and a cell plate is absent, but a membrane was observed. Mature pollen grains are 2‐cellular and have high germination rates. The ovule is anatropous, crassinucellate and bitegmic, and meiotic result in linear tetrads of megaspores, the one at the chalazal end functions directly as an embryo‐sac cell. The development of the embryo sac is of the Polygonum‐type and endosperm formation is of the nuclear type. The outer integument of the ovule differentiates into an outer fleshy and an inner stony layer while the inner integument is reduced to a tanniniferous layer. The normal embryological development, high germination rates of pollen and high seed set indicate that the primary reason for the decline of the species is not to be found in these developmental processes.  相似文献   

13.
In the ovules of Vanilla (Vanilla planifolia Andr.) before fertilization, outer integument surrounded the lower part of ovule. Uranin got into ovule through funiculus, forming, the first center of fluorescence at the chalaza zone of ovule. Then uranin was transported to micropyle end along inner integument, forming the second center of fluorescence at micropyle end of inner integument. Soon, fluorescence appeared in the egg apparatua. After fertilization, the outer integument ovule extended upward, forming micropyle ogerber with inner integument. After getting into ovule through funiculus, uranin spreads to- ward several directions: l. transported to outer integument at the entrance of micropyle; 2. transported downward to chalaza zone along outer integument at the side of funiculus; 3. extended from chalaza zone to the inside and to the outer integument at the side far from funiculus The ovules of Vanilla had no vascular bundles. On transporting in inner integument, however, the cells in inner layer next to the embryo sac appeared to be the major passage. In mature embryo sac, there was cuticle between inner integument and embryo sac at the half of micropyle end. But between embryo sac at the half of chalaza end and nucellus, cuticle was absent. Nutrient could get into embryo sac from chalaza end undoubtedly. As egg apparatus showed the fluorescence after formation of fluorescence center of inner integument at micropylar end, the possibility that nutrient got into embryo sac from micropyle could not be excluded.  相似文献   

14.
大叶杨配囊及胚珠的形成和发育   总被引:3,自引:0,他引:3  
本文应用细胞化学方法研究了大叶杨胚珠、胚囊的形成和发育过程中核酸、蛋白质及不溶性多糖的分布和消长。大孢子母细胞、大孢子四分体及功能大孢子中含较少不溶性多糖,但却含丰富的RNA和蛋白质。功能大孢子经分裂发育成八核的蓼型胚囊。四核胚囊开始积累细胞质多糖,成熟胚囊中除反足细胞外充满淀粉粒。反足细胞形成后不久即退化。助细胞具多糖性质的丝状器,受精前两个助细胞退化。卵细胞核对Feulgen反应呈负反应。二极核受精前由胚囊中部移向卵器,与卵器接触后融合形成次生核。发育早期的胚珠为厚珠心,双珠被。晚期,内珠被退化,故成熟胚珠为单珠被。四核胚囊时期,珠孔端珠心组织退化,胚囊伸向珠孔形成胚囊喙。合点端珠心组织含丰富的蛋白质和核酸,这一性质与绒毡层性质相似,可能涉及胚囊的营养运输。胚囊的营养来源于子房和胎座细胞内贮存的淀粉粒。  相似文献   

15.
BHANWRA  R. K. 《Annals of botany》1988,62(3):215-233
A preliminary study of four bambusoid, three arundinoid, l0pooid, 16 chloridoid and 26 panicoid grasses, coupled with datafrom previous studies reveal that, in addition to the relativesize and structure of the mature embryo reported by Reeder (1957,1962), taxa belonging to the subfamilies Pooideae and Panicoideaealso possess contrasting characters in respect to the shapeof ovary, structure of dorsal ovary wall, extent of developmentof integuments, behaviour of the nucellar epidermis in the vicinityof the micropyle, orientation of the mature megagametophytein relation to the longitudinal axis of the ovule, constitutionof the unreduced megagametophytes in apomictic taxa, shape ofthe embryo sac during free nuclear stages of endosperm, positionof the antipodals in the embryo sac after fertilization, anddifferentiation in the inner epidermis of the inner integumentafter fertilization. These characters may also be typed as either‘pooid’ or ‘panicoid’ in nature. The‘pooid’ features exhibit a higher frequency in grassesof the subfamilies Bambusoideae, Arundinoideae and Chloridoideae.The ‘panicoid’ features are predominant in grassesof the subfamily Panicoideae. Embryology, systematics, gramineae  相似文献   

16.
Microsporogenesis and embryology of the monotypic Zippelia (Z. begoniaefolia) Blume (Piperaceae) is described for the first time to assess its systematic relationships. The formation of the anther wall is of Basic Type such that the anther wall, consisting of an endothecium with fibrous thickenings, two middle layers, and a glandular septum with 2‐nucleate cells, is derived from a primary parietal layer. Simultaneous cytokinesis follows meiosis of the microspore mother cell thence forming a tetrahedral tetrad of microspores. The single basal ovule is orthotropous, crassinucellate and bitegmic but only the inner integument forms the micropyle. The sporogenous cell of the nucellus functions directly as a megaspore mother cell. A coenocyte with four nuclei forms after meiosis of the megaspore mother cell. The formation of the embryo sac is tetrasporic ab initio and is of, or similar to, the Drusa Type of embryo sac in which the nuclei of the coenocyte undergo two successive mitoses and forms a 16‐celled or 16‐nucleate embryo sac that is ovoid in shape. The embryo sac has an egg apparatus consisting of an egg cell and two synergids (but one of the latter is less discernable). Two polar cells occur just beneath the egg apparatus and 11 antipodal cells or nuclei are arranged along the lower part of the inner wall of the embryo sac. They are linked by threads of cytoplasm. The two polar cells are separated or fused before fertilization. A large primary endosperm nucleus with many nucleoli, which resulted from the fertilized polar cells and with the participation of antipodal cells, divides into a free nuclei stage. The free nuclei are arranged along the lower part of the inner wall of the embryo sac or rarely assemble at the central part. The development of endosperm is thus of the Nuclear Type. The zygote remains undivided and fails to develop even when the seed is nearly mature. Frequently, the zygote and the endosperm abort later and leave an empty chamber in the top part of the seed. Most of the seed content is starchy perisperm. Only the inner integument forms the seed coat and the pericarp develops glochidiate hairs (anchor‐like hairs) when the endosperm begins to develop. By comparison with the other piperaceous taxa using embryological and botanical features, Zippelia is referred to as a basal taxon and a more isolated evolutionary line or a blind branch in the Piperaceae. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society, 2002, 140 , 49–64.  相似文献   

17.
The plastid genomes of early-diverging angiosperms were among the first land plant plastomes investigated. Despite their importance to understanding angiosperm evolution, no investigation has so far compared gene content or gene synteny of these plastid genomes with a focus on the Nymphaeales. Here, we report an evaluation and comparison of gene content, gene synteny and inverted repeat length for a set of 15 plastid genomes of early-diverging angiosperms. Seven plastid genomes of the Nymphaeales were newly sequenced for this investigation. We compare gene order and inverted repeat (IR) length across all genomes, review the gene annotations of previously published genomes, generate a multi-gene alignment of 77 plastid-encoded genes and reconstruct the phylogenetic relationships of the taxa under study. Our results show that gene content and synteny are highly conserved across early-diverging angiosperms: All species analyzed display complete gene synteny when accounting for expansions and contractions of the IRs. This conservation was initially obscured by ambiguous and potentially incorrect gene annotations in previously published genomes. We also report the presence of intact open reading frames across all taxa analyzed. The multi-gene phylogeny displays maximum support for the families Cabombaceae and Hydatellaceae, but no support for a clade of all Nymphaeaceae. It further indicates that the genus Victoria is embedded within Nymphaea. Plastid genomes of Trithuria were found to deviate by numerous substitutions and length changes in the IRs. Phylogenetic analyses further indicate that a previously published plastome named Nymphaea mexicana falls into a clade of N. odorata and should be re-evaluated.  相似文献   

18.
ABE  KIYOHIKO 《Annals of botany》1977,41(4):897-899
The embryo sac of Amitostigma kinoshitae was studied. The ovuleis anatropous, bitegmic, and tenuinucellate. The inner integumentalone forms a micropyle. The megaspore of a tetrad nearest tothe chalaza develops into an eight-nucleate embryo sac of thetypical Polygonum-type. Double fertilization takes place normally.  相似文献   

19.
Development of seeds following pollination with irradiated pollenwas studied inActinidia deliciosa(kiwifruit) ‘Hayward’.Pollinations were carried out using two different sources ofpollen (‘Tomuri’ and ‘Matua’) irradiatedwith gamma rays at doses of 700 and 900 Gy. Non-irradiated crosseswere used as controls. Pollen irradiation had little effectonin vitropollen germination. Irradiated pollen affected seedset and seed content, and induced the formation of parthenogeneticembryos. In comparison to the control, the embryo growth ratewas slower and the endosperm contained very low amounts of storageproducts. Seed set was significantly reduced following bothdoses of irradiation. Two types of seeds were observed: (1)seeds with endosperm only; and (2) seeds with both embryo andendosperm. The proportion of seeds containing endosperm onlywas almost ten-fold higher than those containing both embryoand endosperm. Embryo production by gamma-irradiated pollenwas genotype- and dose-dependent. The induction of parthenogenesiswas higher following gamma ray doses of 900 Gy than 700 Gy,which suggests the ‘Hertwig Effect’; the best efficiencywas obtained with ‘Tomuri’ pollen. Ploidy levelof parthenogenetic embryos was evaluated by nuclear size (area)with the use of image analysis. There was a large differencein embryo nuclei size between control and parthenogenetic embryos(mean size 90.8 and 49.1 µm2, respectively). It is concludedthat parthenogenetic embryos represent trihaploids.Copyright1998 Annals of Botany Company. Actinidia deliciosa, kiwifruit, pollen irradiation, induced parthenogenesis.  相似文献   

20.
Embryological features ofGlaucidium palmatum are as follows: the ovule is anatropous and bitegmic; the archesporium is hypodermal and multicelled, consisting of about 10 to 15 cells; all the archesporial, cells develop directly into megaspore mother cells, only three or four of which, however, generally complete meiotic divisions; before and during meiosis, dermal cells of the nucellar apical part undergo successive periclinal divisions forming a thick nucellar cap of as many as 20 cell-layers; embryo sac formation is of the Polygonum type; multiple embryo sacs occur frequently; antipodal cells are small in size and ephemeral or persistent; the inner integument is 3 to 5 cell-layers thick, and the outer integument 7 to 13 cell-layers thick; the outer integument is vascularized; a micropyle is formed by the inner integument alone; the endosperm is of the Nuclear type; embryogeny is of a type similar to the Onagrad type. In light of evidence from embryology and other sources it seems that there is ample reason for recognizing the family Glaucidiaceae which is distinct from the Ranunculaceae and its related families. Several common embryological features suggest an affinity between the Glaucidiaceae and the Paeoniaceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号