首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We and others have suggested previously that the binding of somatostatin to its receptors in the pancreas is regulated by not only somatostatin analogs but also cholecystokinin analogs in proportion to their known biological potencies. To clarify the precise mechanism by which unrelated peptides modulate somatostatin binding, the effect of a phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA), or a synthetic diacylglycerol analog, 1-oleyl-2-acetylglycerol (OAG), on [125I-Tyr1]somatostatin binding to pancreatic acinar cell membranes was examined. Pretreatment of pancreatic acini for 120 min at 37 degrees C with 100 ng/ml TPA maximally reduced subsequent labeled somatostatin binding to acinar membranes. The inhibitory effect of TPA on the somatostatin binding was dependent on the dose used or the time and temperature of pretreatment. These effects of TPA were almost mimicked by the treatment of acini with OAG. Scatchard analysis of [125I-Tyr1]somatostatin binding demonstrated that the decrease in the labeled somatostatin binding induced by TPA or OAG pretreatment was due to the decrease in the maximum binding capacity without a significant change in the binding affinity. A specifically labeled single band of Mr = 90,000 obtained with a photoaffinity cross-linking study indicates that the somatostatin-binding sites are the same somatostatin receptor as previously described. Moreover, the intensity of the Mr = 90,000 band was dramatically decreased when acini were treated with increasing concentrations of TPA, a finding consistent with TPA-induced decrease in binding capacity. Such an inhibitory effect of TPA was abolished when pretreatment of acini with TPA was performed in the presence of Ca2+-chelating compounds such as EDTA and EGTA or phospholipid-interacting drugs such as chlorpromazine and tetracaine. Interestingly, the combined treatment of TPA and Ca2+ ionophore A23187 caused synergistic inhibition of the subsequent labeled somatostatin binding to acinar membranes, although Ca2+ ionophore itself almost failed to affect the somatostatin binding. These results suggest, therefore, that TPA or OAG can modulate somatostatin binding to its receptors on rat pancreatic acinar cell membranes, presumably through activation of Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C); and the activated protein kinase C and intracellular Ca2+ mobilization presumably act to modulate the pancreatic acinar somatostatin receptors synergistically.  相似文献   

2.
The association of agonists with muscarinic receptors in membranes from bovine brain was affected only slightly by guanine nucleotides. However, solubilization of these membranes with deoxycholate and subsequent removal of detergent resulted in a preparation of receptors with increased affinity for agonists and a large increase in response to guanine nucleotides. Chromatography of deoxycholate extracts of membranes on DEAE-Sephacel resulted in the separation of receptors from 95% of the guanine nucleotide-binding activity. Guanine nucleotides had no effect on the binding of agonists to these resolved receptors. The effect of guanine nucleotides was restored after the addition of either of two purified guanine nucleotide-binding proteins from bovine brain. One of these proteins, presumably brain GI, is composed of subunits with the same molecular weights (alpha, 41,000; beta, 35,000; gamma, 11,000) and functions as the inhibitory guanine nucleotide-binding protein isolated from liver. The other protein, termed Go, is a novel guanine nucleotide-binding protein that possesses a similar subunit composition (alpha, 39,000; beta, 35,000; gamma, 11,000) but whose function is not yet known. Addition of either protein to the resolved receptor preparation increased agonist affinity by at least 10-20-fold, and low concentrations of guanine nucleotides specifically reversed this effect. Reconstitution of receptors with the resolved subunits of Go demonstrates that the beta subunit alone had no effect on agonist binding, but that this subunit does appear to enhance the effects observed with the alpha subunit alone.  相似文献   

3.
4.
Analgesic effect of interferon-alpha via mu opioid receptor in the rat   总被引:4,自引:0,他引:4  
Using the tail-flick induced by electro-stimulation as a pain marker, it was found that pain threshold (PT) was significantly increased after injecting interferon-alpha (IFN alpha) into the lateral ventricle of rats. This effect was dosage-dependent and abolished by monoclonal antibody (McAb) to IFN alpha. Naloxone could inhibit the analgesic effect of IFN alpha, suggesting that the analgesic effect of IFN alpha be related to the opioid receptors. Beta-funaltrexamine (beta-FNA), the mu specific receptor antagonist could completely block the analgesic effect of IFN alpha. The selective delta-opioid receptor antagonist, ICI174,864 and the kappa-opioid receptor antagonist, nor-BNI both failed to prevent the analgesic effect of IFN alpha. IFN alpha could significantly inhibit the production of the cAMP stimulated by forskolin in SK-N-SH cells expressing the mu-opioid receptor, not in NG108-15 cells expressing the delta-opioid receptor uniformly. The results obtained provide further evidence for opioid activity of IFN alpha and suggest that this effect is mediated by central opioid receptors of the mu subtype. The evidence is consistent with the hypothesis that multiple actions of cytokines, such as immunoregulatory and neuroregulatory effects, might be mediated by distinct domains of cytokines interacting with different receptors.  相似文献   

5.
Extracts, fractions and constituents of Hypericum perforatum were studied for in vitro receptor binding with various ligands to recombinant CNS receptors expressed with the Semliki Forest virus expression system. For this purpose we have prepared membranes of CHO cells with high density of several opioid, serotonin, estrogen, histamine, GABAA, neurokinin and metabotropic glutamate receptors, respectively. A lipophilic Hypericum fraction revealed relatively potent inhibition to the binding of the mu-, delta- and kappa-opioid and the 5-HT6 and 5-HT7 receptors. Moreover, Hypericum constituents such as the naphthodianthrones, hypericin and pseudohypericin, and the phloroglucinole hyperforin inhibited both binding to the opioid and serotonin receptors in the lower micromolar range. Estrogen binding was 50% inhibited by the biflavonoid I3,II8-biapigenin at micromolar concentration. The lipophilic Hypericum fraction provided a less potent inhibition of the neurokinin-1 receptor binding compared to the opioid and serotonin receptors. A total ethanolic Hypericum extract potently inhibited GABAA binding at approximately 3 micrograms/ml. This inhibition is however not specific to Hypericum, since extracts of plants like Valeriana officinalis and Passiflora incarnata showed similar inhibitions. Binding to neither histamine nor metabotropic glutamate receptors was affected by Hypericum extracts. These results support the hypothesis that several active constituents of Hypericum might in a synergistic way contribute to its antidepressant effect in the central nervous system.  相似文献   

6.
S A Krumins  D C Kim  A A Larson 《Peptides》1990,11(2):281-285
The effects of substance P (SP) on the binding of the selective mu opioid agonist [3H]DAMGO to brain membranes of CXBK and Swiss-Webster (SW) mice were compared. We have previously shown that subnanomolar concentrations of SP and N-terminal fragments of SP modulate DAMGO binding in SW brain membranes and hypothesized that modulation occurs via SP interaction with mu 1 sites. In the present study, binding assays using CXBK mice, a strain deficient in mu receptors including mu 1 sites, were performed to assess the effect of mu receptor deficiency on SP-induced modulation of DAMGO binding. Whereas the addition of 0.1 nM SP to the binding mixtures produced up to 30% increase in the values of Kd and maximum binding capacity (R) for the SW strain, SP produced little or no change in the case of CXBK strain. Maximum binding capacity for DAMGO was 43% less in the brain of CXBK mice than in SW mice. No difference was observed in the estimated binding parameters of the spinal cord for the two strains. Whereas pretreatment of brain membranes of SW mice using beta-funaltrexamine (beta-FNA) increased from 2- to 10-fold the modulatory effect of SP, CXBK brain membranes pretreated with beta-FNA remained nearly insensitive to modulation by SP. The effect of SP on the affinity of DAMGO binding in SW mice, but not in CXBK mice, was reversed by the addition of GTP. It is concluded that mu receptor deficiency can markedly influence SP-induced modulation of DAMGO binding.  相似文献   

7.
Detergent solubilization of the interleukin 1 receptor   总被引:5,自引:0,他引:5  
Interleukin 1 (IL 1) receptors were solubilized from membranes prepared from murine EL-4 thymoma cells with the zwitterionic detergent 3[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS). Binding of IL 1 to the solubilized receptor was detected by a polyethylene glycol (PEG) precipitation procedure. Concentrations of CHAPS from 4 to 8 mM were effective in solubilizing the IL 1 receptor. At 10 mM CHAPS, there was some loss in binding activity, whereas 2 mM CHAPS was completely ineffective in solubilizing the receptor. Detergent concentrations of 4 mM were routinely used. The solubilized receptor retains the ability to bind 125I-IL 1 in a specific and saturable manner. Scatchard analysis reveals a single type of high affinity binding site having an apparent dissociation constant (KD) of approximately 1.2 X 10(-10) M. Nearly identical KD values are observed for membrane fractions. There are approximately 400 to 500 fmol receptor/mg protein in the detergent extract, corresponding to a two- to threefold enrichment in the Bmax observed for membranes. There is no loss in receptor activity as determined by complete recovery of the total number of binding sites from membranes after solubilization. Binding kinetics show that apparent steady state for the solubilized receptor is reached after 60 min at 37 degrees C. The binding of 125I-IL 1 is essentially irreversible because relatively little bound ligand can be dissociated from the receptor on the addition of excess unlabeled IL 1 at 37 degrees C. Both human IL 1 alpha and IL 1 beta compete for binding of 125I-IL 1 to the soluble receptor, confirming that IL 1 alpha and IL 1 beta bind to the same receptor. Other recombinant proteins, including interferon-alpha A, interferon-gamma, and interleukin 2 have no inhibitory effect.  相似文献   

8.
The effects of incubation of rat brain membranes at 0 degrees C on the specific binding of mu-ligands (naloxone, morphine) and the delta-ligand (D-Ala2, D-Leu5-enkephalin) to opiate receptors were studied. The effects of lyophilization of rat brain membranes on the properties of the opiate receptors were determined. The lyophilized brain membrane preparations revealed an extraordinarily high stability as compared to "wet" membranes. The experimental results suggest that morphine and D-Ala2, D-Leu5-enkephalin binding both to the high affinity and low affinity sites has different nature and point to the utility of stable and standard preparations of lyophilized membranes for the use in the receptor analysis of opiate and opioid peptides.  相似文献   

9.
Receptors for alpha 2-macroglobulin-proteinase complexes have been characterized in rat and human liver membranes. The affinity for binding of 125I-labelled alpha 2-macroglobulin.trypsin to rat liver membranes was markedly pH-dependent in the physiological range with maximum binding at pH 7.8-9.0. The half-time for association was about 5 min at 37 degrees C in contrast to about 5 h at 4 degrees C. The half-saturation constant was about 100 pM at 4 degrees C and 1 nM at 37 degrees C (pH 7.8). The binding capacity was approx. 300 pmol per g protein for rat liver membranes and about 100 pmol per g for human membranes. Radiation inactivation studies showed a target size of 466 +/- 71 kDa (S.D., n = 7) for alpha 2-macroglobulin.trypsin binding activity. Affinity cross-linking to rat and human membranes of 125I-labelled rat alpha 1-inhibitor-3.chymotrypsin, a 210 kDa analogue which binds to the alpha 2-macroglobulin receptors in hepatocytes (Gliemann, J. and Sottrup-Jensen, L. (1987) FEBS Lett. 221, 55-60), followed by SDS-polyacrylamide gel electrophoresis, revealed radioactivity in a band not distinguishable from that of cross-linked alpha 2-macroglobulin (720 kDa). This radioactivity was absent when membranes with bound 125I-alpha 1-inhibitor-3 complex were treated with EDTA before cross-linking and when incubation and cross-linking were carried out in the presence of a saturating concentration of unlabelled complex. The saturable binding activity was maintained when membranes were solubilized in the detergent 3-[(3-cholamidopropyl)dimethylammonio]propane sulfonate (CHAPS) and the size of the receptor as estimated by cross-linking experiments was shown to be similar to that determined in the membranes. It is concluded that liver membranes contain high concentrations of an approx. 400-500 kDa alpha 2-macroglobulin receptor soluble in CHAPS. The soluble preparation should provide a suitable material for purification and further characterization of the receptor.  相似文献   

10.
We have studied how insulin-mediated internalization of insulin receptors and insulin activation of the insulin receptor kinase might be inter-related. Isolated rat adipocytes were exposed to 0, 6, or 500 ng/ml insulin for 40 min at 37 degrees C. Subsequently, plasma membrane, low-density microsomal membrane and high-density microsomal membrane subcellular fractions were prepared. Measurement of insulin binding to insulin receptors isolated from the membrane fractions revealed that exposure of cells to insulin resulted in a loss of binding activity (13% at 6 ng/ml, 27% at 500 ng/ml insulin) from the plasma membranes which was completely accounted for by the appearance of receptors in the low-density and high-density microsomal membrane fractions, indicating that insulin had induced translocation of insulin receptors from the surface to the cell interior. Measurement of kinase activity of the isolated receptors revealed that exposure of intact cells to 500 ng/ml insulin resulted in as much as a 35-fold increase in the intrinsic kinase activity of receptors from subcellular fractions. The kinase activity per receptor was equal in all fractions at 3-4 min but by 20 min the activity of the internalized receptors fell approximately 40% to a steady state; plasma membrane receptors, on the other hand, remained fully active over time. This indicates that newly internalized receptors retain their kinase activity but undergo subsequent deactivation. Following exposure of cells to 6 ng/ml insulin, the degree of activation of the insulin receptor kinase was lower in the plasma membrane fraction (24% of the insulin effect at 500 ng/ml) than in the low-density and high-density microsomal membrane fractions (54 and 77%, respectively, of the insulin effect at 500 ng/ml). These results suggest that receptors with an activated kinase are preferentially internalized. We conclude that exposure of adipocytes to insulin causes endocytosis of insulin receptors and activation of insulin receptor kinase, newly internalized receptors are fully active tyrosine kinases but are deactivated as they traverse the intracellular organelles represented by low-density and high-density microsomal membranes, and insulin receptor occupancy, possibly by stimulating phosphorylation and activating the insulin receptor kinase, is important for targeting insulin receptors for internalization.  相似文献   

11.
Opioid receptors solubilized in Mg2+-digitonin (2%, wt/vol) from Mg2+-pretreated rat brain membranes maintain, in addition to high-affinity opioid agonist binding, the modulation by guanine nucleotides. One of the modes of expression of the latter property is an attenuation of agonist binding by guanine nucleotides in the presence of Na+. To investigate the molecular basis of this modulation and to identify the G protein(s) involved, the soluble receptors were [32P]ADP-ribosylated by means of Bordetella pertussis toxin and subjected to molecular size exclusion chromatography. In addition, soluble extracts were chromatographed on lectin and hydrophobic affinity columns. The binding of 35S- and 3H-labelled analogues of GTP was also monitored in the species separated. The oligomeric G protein-coupled opioid receptors and the guanine nucleotide/pertussis toxin-sensitive species showed similar chromatographic properties in all three systems. This indicates that the biochemically functional G protein-opioid receptor complex formed in Mg2+-pretreated membranes in the absence of an agonist is stable in digitonin solution and to chromatographic separation. Further analysis showed that the guanine nucleotide modulation of opioid receptors is via the pertussis toxin substrates with Mr of 41,000 and 39,000, which are identified as Gi and Go alpha subunits, respectively.  相似文献   

12.
Human interferon beta (IFN beta ser), produced by recombinant DNA technology, was radiolabeled to approximately one atom of iodine-125/molecule of interferon without detectable loss of antiviral activity. At 37 degrees C, binding of 125I IFN beta ser occurred rapidly (t1/2max less than or equal to 15 min) followed by internalization and degradation of bound ligand. Kinetic analysis at 4 degrees C indicated diffusion-limited association kinetics independent of 125I IFN beta ser concentration. Dissociation of bound 125I IFN beta ser from Daudi cells was slow (t1/2 = 1.2 h) of bound radiolabeled ligand was observed in the presence of unlabeled IFN beta ser, naturally produced IFN beta, and IFN alpha 6, but was not observed with unlabeled IFN gamma or nonspecific proteins. Concomitantly, equilibrium analysis indicated heterogeneous binding of 125I IFN beta ser to six cell lines of lymphoid origin consistent with either negative cooperativity or two populations of receptors. Analysis of binding of 125I IFN beta ser to Daudi cell receptors in the presence of unlabeled IFN alpha 6 suggested that one receptor served both ligands. The latter conclusion was supported by results of chemical cross-linking experiments in which an 125I IFN beta ser/receptor complex (Mr 120,000-130,000) was observed following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This complex was absent when binding occurred in the presence of either excess unlabeled IFN beta ser or IFN alpha 6.  相似文献   

13.
The effects of pentobarbitone on the binding of gamma-aminobutyric acid (GABA) to crude synaptosomal rat brain membranes were studied. In extensively washed P2 membranes, pentobarbitone had a biphasic action: at concentrations ranging between 12.5 and 500 microM, pentobarbitone enhanced GABA binding in a concentration-dependent manner; at concentrations greater than 500 microM, this enhancement was progressively reversed towards control levels of GABA binding. The effect of pentobarbitone seen at higher concentrations may reflect a GABA-mimetic action, since similar concentrations enhanced diazepam binding to washed P2 membranes, an effect antagonized by bicuculline methochloride and picrotoxinin. When washed P2 membranes were incubated in 0.5% Triton X-100 (30 min at 37 degrees C), the enhancement of GABA binding by low concentrations of pentobarbitone was abolished, while at higher concentrations GABA binding was progressively inhibited, suggesting that the GABA-mimetic action is retained. When washed P2 membranes were subjected to high-frequency homogenization, the biphasic dose-response relationship for pentobarbitone was markedly shifted to the right. The choice of membrane preparation appears to be a critical factor in examining drug-receptor interactions in vitro, at least for those involving GABA and the barbiturates.  相似文献   

14.
Possible coupling of bovine adrenal medullary opioid receptors to islet-activating protein (IAP, pertussis toxin)-sensitive GTP-binding proteins was investigated by studying effects of guanyl-5'-yl imidodiphosphate (Gpp(NH)p) and IAP treatment of membranes on opioid binding. Gpp(NH)p inhibited [3H]D-Ala2-D-Leu5-enkephalin ([3H]DADLE) binding by increasing the dissociation constant of [3H]DADLE and membranes, and enhanced slightly [3H]diprenorphine binding. IAP treatment of membranes reduced [3H]DADLE binding and abolished almost completely the Gpp(NH)p inhibition of [3H]DADLE binding. Treatment of membranes with IAP and [32P]NAD resulted in radio-labeling of membrane proteins of approximately 39,000 dalton. DADLE inhibited adenylate cyclase activity in rat brain caudate nucleus. However, DADLE, beta-endorphin, levorphanol and dynorphin A(1-13) did not show any significant inhibitory action on bovine adrenal medullary adenylate cyclase activity. These results suggest that bovine adrenal medullary opioid (DADLE) receptors are linked to IAP-sensitive GTP-binding proteins which are not directly coupled to adenylate cyclase.  相似文献   

15.
Experiments were undertaken to determine whether the steroid-dependent lordosis response of female guinea pigs is under adrenergic control. In initial experiments, treatment with the centrally active phenylethanolomine N-methyltransferase (PNMT; the enzyme catalyzing methylation of norepinephrine to epinephrine) inhibitor SKF-64139 inhibited lordosis behavior induced by estradiol-17 beta benzoate plus progesterone. SKF-29661, a PNMT inhibitor that does not cross the blood-brain barrier, did not affect lordosis. However, no detectable epinephrine was found in brain or spinal cord of drug- or vehicle-treated guinea pigs. This suggests that epinephrine neuronal systems do not exist in the guinea pig CNS. In agreement with this idea, the inhibitory effects of SKF-64139 on lordosis were found to be primarily attributable to the blockade of alpha noradrenergic receptors rather than to PNMT inhibition. Two lines of evidence support this conclusion. First, using in vitro receptor binding techniques, SKF-64139 was found to have a relatively high affinity for alpha 1 and particularly alpha 2 receptors in guinea pig forebrain. Second, presumably through competitive inhibition of SKF-64139 binding to alpha receptors, treatment with clonidine (an alpha receptor agonist) overrode the inhibitory effects of SKF-64139 on lordosis. Taken together, these findings indicate the possible absence of epinephrine neuronal systems in guinea pig brain and reemphasize the importance of alpha receptors in regulating steroid-dependent lordosis behavior in this species.  相似文献   

16.
Pretreatment of intact NG108-15 cells with pertussis toxin suppresses opioid inhibition of cyclic AMP accumulation mediated by the inhibitory guanine nucleotide-binding regulatory protein, Ni, which apparently also mediates the inhibitory nucleotide effects on opioid against binding. The toxin treatment had no effect on opioid agonist binding measured in NG108-15 cell membranes without sodium present. However, the toxin potentiated the inhibitory effect of sodium on agonist binding, leading to an agonist-specific reduction of opioid receptor affinity in the presence of sodium in the binding reaction. The potency of the stable GTP analog, GTP gamma S, to reduce agonist binding in the presence of sodium was little changed in membranes prepared from pertussis toxin-treated cells compared to control membranes, whereas the potency of the stable GDP analog, GDP beta S, was magnified. The data indicate that ADP-ribosylation of Ni by pertussis toxin potentiates sodium regulation of opioid agonist binding and that the communication between Ni and opioid receptors is not lost by the covalent modification of Ni.  相似文献   

17.
Abstract: In unmodified synaptosomal brain membranes the presence of NaCl inhibited the binding to μ receptors of the tritiated opioid agonists etorphine, Tyr-D-Ala-Gly-(Me)Phe-Gly-ol, and sufentanil by 53, 43, and 37%, respectively, and increased that of the antagonist [3H]naltrexone by 54%. On the other hand, in membranes whose microviscosity was increased by incorporation of cholesteryl hemi-succinate (CHS) the effects of sodium on opioid agonist and antagonist binding were abolished and strongly reduced, respectively. Furthermore, in the modified membranes the ability of sodium to protect the opioid receptor from inactivation by the sulfhydryl-reactive agent N -ethyl-maleimide (NEM) was diminished. In CHS-treated membranes whose elevated microviscosity was reduced by the incorporation of oleic acid, the effectiveness of sodium in modulating opioid binding and attenuating receptor inactivation by NEM was restored. The results implicate membrane microviscosity in the mechanism by which sodium modulates the conversion between agonist-and antagonist-favoring states of μ opioid receptor.  相似文献   

18.
We investigated the binding characteristics of agonists to alpha 1- and beta-adrenergic receptors of intact liver cells, broken rat liver cell membranes, and detergent-solubilized preparations under varying experimental conditions, focusing on the different "states" of the receptor for agonists and the regulation of these states by temperature and guanine nucleotides. While only low-affinity binding of agonists to both receptor subtypes was evident in studies performed at 37 degrees C with solubilized preparations, biphasic competition curves for agonists were observed in both intact cells and membrane preparations; the majority of sites were of low affinity. In membrane preparations, the nonhydrolyzable GTP analogue Gpp(NH)p caused a rightward shift of agonist competition curves and a loss of high-affinity binding. These results are consistent with the involvement of guanine nucleotide binding proteins in both alpha 1- and beta-adrenergic transduction pathways. When competition studies were performed at 4 degrees C, receptor sites existed predominantly in the high-affinity configuration, in intact cells and membranes, as well as in soluble preparations. In contrast to the studies conducted at 37 degrees C, no Gpp(NH)p-induced conversion to the lower affinity state could be demonstrated in studies performed with membrane preparations at 4 degrees C. Thus, the high-affinity state of alpha 1- and beta-adrenergic receptors is stabilized at 4 degrees C in intact cells, membranes, and soluble preparations. After incubations had been performed at 37 degrees C, high-affinity binding of agonists could not be restored by subsequent incubation at 4 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The binding sites for opiates (agonist and antagonist) and opioid peptides can be solubilized from rat brain membranes with digitonin in the presence of Mg2+ (10 mM). High affinity and high capacity binding to the soluble delta, mu, and kappa receptors is obtainable when the membranes are treated in Mg2+ (30 degrees C, 60 min) prior to solubilization. The yields of solubilized binding sites extracted with digitonin, 40-90%, are higher than those obtained from Mg2+-pretreated membranes with other detergents commonly used for receptor solubilization. The stability of the digitonin-soluble opioid receptor at room temperature makes it useful for purification and characterization.  相似文献   

20.
Characterization and Regulation of Insulin Receptors in Rat Brain   总被引:9,自引:7,他引:2  
An in vitro receptor binding assay, using filtration to separate bound from free [125I]insulin, was developed and used to characterize insulin receptors on membranes isolated from specific areas of rat brain. The kinetic and equilibrium binding properties of central receptors were similar to those of hepatic receptors. The binding profiles in all tissues were complex and were consistent with binding in multiple steps or to multiple sites. Similar binding properties were found among receptors in olfactory tubercle/bulb, cerebral cortex, hippocampus, striatum, hypothalamus, and cerebellum. High affinity [125I]insulin binding sites (KD = 3-11 nM) were distributed evenly between membranes isolated from P1 and P2 fractions of these brain areas, with the exception of the olfactory tubercle in which binding to P2 membranes was four-fold greater (Bmax = 150 fmol/mg protein). One difference between insulin receptors in brain and peripheral target tissues, however, was observed. Following exposure to 0.17 microM insulin for 3 h at 37 degrees C, the number of specific [125I]insulin binding sites on adipocytes decreased by 40%, while the number of binding sites on minces of cerebral cortex/olfactory tubercle remained constant. The results suggest that although the binding characteristics of central and peripheral insulin receptors are similar, these receptors do not appear to be regulated in the same manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号