首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exposure to ultraviolet (UV) radiation, as in sunlight, can modulate immune responses in animals and humans. This immunomodulation can lead to positive health effects especially with respect to certain autoimmune diseases and allergies. However, UV-induced immunomodulation has also been shown to be deleterious. Experimental animal studies have revealed that UV exposure can impair resistance to many infectious agents, such as bacteria, parasites, viruses, and fungi. Importantly, these effects are not restricted to skin-associated infections, but also concern systemic infections. The real consequences of UV-induced immunomodulation on resistance to infectious diseases are not known for humans. Risk estimations have been performed through extrapolation of animal data, obtained from infection models, to the human situation. This estimation indicated that UV doses relevant to outdoor exposure can impair the human immune system sufficiently to have effects on resistance to infections. To further quantify and validate this risk estimation, data, e.g., from human volunteer studies, are necessary. Infection models in humans are not allowed for ethical reasons. However, vaccination against an infectious disease evokes a similar immune response as the pathogen and thereby provides an opportunity to measure the effect of UV radiation on the immune system and an estimate of the possible consequences of altered resistance to infectious agents. Effects of controlled UVB exposure on immune responses after hepatitis B vaccination have been established in mice and human volunteers. In mice, cellular and Th1-associated humoral immune responses to hepatitis B were significantly impaired, whereas in human volunteers no significant effect of UVB on these responses could be found. Preliminary data indicate that cytokine polymorphisms might be, at least in part, responsible for interindividual differences in immune responses and in susceptibility to UVB-induced immunomodulation. In addition, adaptation to UV exposure needs to be considered as a possible explanation for the difference between mice and humans that was observed in the hepatitis B vaccination model.  相似文献   

2.
The aim of our study was to compare serum concentration of IL-1beta, IL-6, IL-8, IL-10, and TNF-alpha in 105 healthy volunteers before and after exposure to UVR: 25 subjects (10 days of UVB), 55 (10 days of UVB or solar-simulated radiation, followed by acute UVB dose), and 25 (local high dose of UVB). In all the individuals blood samples were analyzed before and after final irradiation by chemiluminescence assay. After 10 days of UVB irradiation a statistically significant increase in serum concentration only in IL-8 (P<.05) and strong tendency in TNF-alpha (P=.05) were observed. The applied schedules of irradiation have minor impact on serum cytokine level and still a threshold dose of UVR causing systemic immune impairment is unknown.  相似文献   

3.
Cytokine single nucleotide polymorphisms in Iranian populations   总被引:1,自引:0,他引:1  
Cytokines are important immunomodulatory molecules involved in immune responses against microorganisms; they also have an important role in the setting of immune system disorders. Cytokine single nucleotide polymorphisms have been extensively studied in different, normal populations as well as in association with disease. Cytokine gene polymorphisms are potentially important as genetic predictors of disease susceptibility, clinical outcome, and as a tool for anthropological studies. In this study, samples have been collected from 455 healthy individuals located in different regions of Iran (Tehran, Yazd, Sistan and Balochistan). Allele and genotype frequencies of cytokine SNP, including: IL-1alpha, IL-1beta, IL-1R, IL-1RA, IL-2, IL-4, IL-4RA, IL-6, IL-10, IL-12, TNF-alpha, TGF-beta and IFN-gamma were investigated, using the PCR-SSP method. Allele frequencies in Tehran and Yazd populations were similar, except for TGF-beta. Allele frequencies in Sistani & Baloch populations were similar at all positions, except for IL-1beta at position of -511 and IFN-gamma genes at position UTR5644; there were some differences in allele frequencies comparing these populations with the Yazd population, including: IL-4, IL-6, IL-10, TGF-beta and TNF-alpha. Although some significant differences were observed for some cytokines, it seems that the cytokine gene polymorphism profile of the Iranian population is similar to that of Caucasians, particularly the Italian population.  相似文献   

4.
Obesity has been implicated in several diseases, including cancer; however, the relationship of obesity and susceptibility to ultraviolet (UV) radiation-caused skin diseases has not been investigated. As UV-induced oxidative stress has been implicated in several skin diseases, we assessed the role of obesity on UVB-induced oxidative stress in genetically obese Lep(ob)/Lep(ob) (leptin-deficient) mice. Here, we report that chronic exposure to UVB (120 mJ/cm(2)) resulted in greater oxidative stress in the skin of obese mice in terms of higher levels of H(2)O(2) and NO production, photo-oxidative damage of lipids and proteins, and greater depletion of antioxidant defense enzymes, like glutathione, glutathione peroxidase, and catalase. As UV-induced oxidative stress mediates activation of MAPK and NF-kappaB signaling pathways, we determined the effects of UVB on these pathways in obese mice. Exposure of obese mice to UVB resulted in phosphorylation of ERK1/2, JNK, and p38 proteins of the MAPK family. Compared to wild-type mice, the obese mice exhibited higher levels of phosphorylation of these proteins, greater activation of NF-kappaB/p65, and higher levels of circulating proinflammatory cytokines, including TNF-alpha, IL-1beta and IL-6, on UVB irradiation. Taking these results together, our study suggests for the first time that obesity in mice is associated with greater susceptibility to UVB-induced oxidative stress and therefore may be a risk factor for skin diseases associated with UVB-induced oxidative stress.  相似文献   

5.
Exposure of skin to UVB radiation (290-320 nm) modulates the immune system, with most studies showing a suppression of Th1-driven immune responses. This study investigated the effects of UVB on Th2-associated immune responses using a murine model of allergic respiratory inflammation. C57BL/6, histamine receptor-1 knockout (H1RKO), and histamine receptor-2 knockout (H2RKO) mice were exposed to a single 4 kJ/m(2) dose of UVB (twice a minimal edemal dose) on shaved dorsal skin 3 days before intranasal sensitization with papain, a cysteine protease homologue of the dust mite allergen Der p 1. H1RKO mice demonstrated enhanced papain-specific inflammatory responses in the lung-draining lymph nodes (LDLNs), whereas the responses of H2RKO mice closely mimicked those of C57BL/6 mice. UVB irradiation 3 days before sensitization reduced in vitro papain-specific proliferation of LDLN cells of C57BL/6 and H1RKO mice but not H2RKO mice 24 h after challenge. The regulatory effect of UVB was transferred by adoptive transfer of unfractionated LDLN cells from UVB-irradiated, papain-sensitized C57BL/6 and H1RKO donor mice in naive recipients of the corresponding strain that were subsequently sensitized and challenged with papain. Additionally, UVB exposure suppressed papain-induced IL-5 and IL-10 production in vitro by LDLN cells from H1RKO mice but not from C57BL/6 mice or H2RKO mice. The results of this study demonstrate systemic immunomodulation of responses to intranasally delivered Ag by UVB irradiation and implicate a role for the H2 receptor in UVB-induced suppression of Ag-specific responses in the draining lymph nodes.  相似文献   

6.
In this study, cutaneous role of IL-4 in UVB-induced apoptosis was investigated using transgenic mice with skin-specific expression of IL-4 (IL-4 Tg mice). The transgenic mice did not show any gross clinical abnormalities. However, epidermis was thickened and increased MHC class II positive cells were detected as well as enhanced expression of inflammatory cytokines such as IL-1 and TNF-alpha in skin. In addition, histological analysis revealed increased infiltration of lymphocytes, acanthosis, hyperkeratosis, and parakeratosis in skin of IL-4 Tg mice. The physiological effect of IL-4 overexpression in skin against environmental stimulus such as UVB was investigated by irradiating wild-type and IL-4 Tg mice with UVB followed by evaluation of apoptosis. The result demonstrated suppressed apoptosis in epidermis of IL-4 Tg mice compared with wild-type mice. To further assess anti-apoptotic function of IL-4 in keratinocytes, stable cell clones were made where IL-4 was constitutively overexpressed and examined for UVB-induced apoptosis. The results showed that apoptosis was remarkably decreased in IL-4 over-expressing cell clones compared with that in mock transfected cells. Collectively, data presented here shows that IL-4 has an inhibitory effect against UVB-induced apoptosis in keratinocytes, suggesting that IL-4 may be an important regulator in cutaneous immunity against UVB.  相似文献   

7.
Exposure to UVB results in formation of cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts in DNA. These can be quantified by a variety of techniques including alkaline gel electrophoresis, ELISAs, Southwestern blotting, and immunohistochemistry. Damage to DNA results in activation of damage response pathways, as indicated by Western blotting using antibodies specific for p53 and breast cancer-associated gene 1 (BRCA1) phosphorylation. The signal from DNA damage to activation of these response pathways appears to be mediated by FKBP12-rapamycin-associated protein (FRAP), since these phosphorylation events are blocked by rapamycin. UVB-induced DNA damage also leads to induction of immunosuppressive cytokines including tumor necrosis factor alpha (TNF-alpha) and interleukin (IL)-10 in skin. Induction of TNF-alpha by UVB is readily detectable in cultured normal human epidermal keratinocytes (NHEKs) using ELISA, while induction of IL-10 is readily detectable in cultured mouse keratinocytes but not in NHEKs. Induction of DNA damage by liposome-encapsulated HindIII results in induction of immunosuppressive responses similar to UVB. Clinical testing shows that liposome-encapsulated T4 endonuclease V or photolyase stimulates repair of CPDs in the skin of human subjects, and prevents UVB-induced immunosuppression. Stimulation of repair and prevention of immunosuppression have been linked to prevention of skin cancer by liposome-encapsulated T4 endonuclease V in repair-deficient xeroderma pigmentosum patients.  相似文献   

8.
9.
Enteroviruses are associated with chronic inflammatory and autoimmune diseases in humans. In these conditions, the cytokine network is supposed to have an important role in inflammation and modulation of the (auto)immune response. In the present study, we demonstrate that coxsackie virus B4 and poliovirus type 1 induce production of pro-inflammatory cytokines IL-1 beta and TNF-alpha in freshly isolated human leucocytes. Furthermore, enteroviruses stimulate the production of cytokines belonging to Th(1)pathways (IFN-gamma, IL-2), and IL-10, which play a role in regulation of the cellular and humoral immune response.  相似文献   

10.
The comparison of the levels of some cytokines (tumor necrosis factor alpha (TNF-alpha), IL-1beta, IL-2, IL-4) in the blood serum of patients with chronic hepatitis C (CHC) having different antibody spectrum was carried out. In CHC patients increased levels of the serum cytokines IL-1beta, TNF-alpha under study in comparison with cytokine levels in donor sera was noted. In patients with detected antiNS5 and antiHCV IgM and antiNS5 HCV the level of IL-1beta was significantly higher than that in CHC patients without antibodies in sera. A change in the levels of proinflammatory and anti-inflammatory cytokines in the blood sera of CHC patients may be of significant diagnostic and prognostic importance.  相似文献   

11.
Acute infection of humans with Ebola and Lassa viruses, two principal etiologic agents of hemorrhagic fevers, often results in a paradoxical pattern of immune responses: early infection, characterized by an outpouring of inflammatory mediators such as TNF-alpha, IL-1 beta, and IL-6, vs late stage infections, which are associated with poor immune responses. The mechanisms underlying these diverse outcomes are poorly understood. In particular, the role played by cells of the innate immune system, such as dendritic cells (DC), is not known. In this study, we show that Ebola and Lassa viruses infect human monocyte-derived DC and impair their function. Monocyte-derived DC exposed to either virus fail to secrete proinflammatory cytokines, do not up-regulate costimulatory molecules, and are poor stimulators of T cells. These data represent the first evidence for a mechanism by which Ebola and Lassa viruses target DC to impair adaptive immunity.  相似文献   

12.
Immunogenetic mechanisms operating within the immune system are known to influence cytokine profiles and disease susceptibility. Yet the role of the individual's neurohormonal background in these processes remains undefined. Hormonal imbalances are documented in immune-related diseases, but it is unclear whether this represents a secondary phenomenon or a primary "defect" related to specific neurohormonal immune phenotype(s). We report that in a large subpopulation of healthy humans the baseline epinephrine output (but not cortisol and sex steroid hormones) correlated inversely with proinflammatory and positively with anti-inflammatory cytokine production. Thus, low vs high epinephrine excretors had a 2- to 5-fold higher TNF-alpha and IL-12 production but 2-fold lower IL-10 production induced by LPS ex vivo. In alternative settings, we found low baseline levels and profoundly blunted stress-induced epinephrine responses but high TNF-alpha levels in Lewis vs Fischer inbred rats. Additionally, isoproterenol, a beta adrenoreceptor agonist suppressed LPS-induced TNF-alpha production, with more pronounced effect in Lewis than in Fischer rats. In human monocytes, epinephrine and the beta(2) adrenoreceptor agonist fenoterol potently inhibited LPS-induced TNF-alpha and IL-12, but stimulated IL-10 production. The order of potency for hormones able to inhibit IL-12 production ex vivo was: epinephrine > norepinephrine > or = 1,25-(OH)(2) vitamin D(3) > hydrocortisone. This indicates that baseline epinephrine conditions cytokine responsiveness and through this mechanism intrinsic hypo- or hyperactive adrenal medullas in some individuals may shape opposite cytokine profiles. Since Lewis and Fischer rats have opposite susceptibility to experimental immunological diseases, this suggests that the parallel human phenotypes could be linked to differing responsiveness and susceptibility to infections and immune/inflammatory-related conditions.  相似文献   

13.
BackgroundCytokines play a key role in the regulation of immune responses. In hepatitis C virus infection, the production of abnormal cytokine levels appears to contribute in the progression of the disease, viral persistence, and affects response to therapy. Cytokine genes polymorphisms located within the coding/regulatory regions have been shown to affect the overall expression and secretion of cytokines. The aim of the study was to evaluate the association of of IL28B rs12979860, TGF-β1-509, TNF-α 308, and IL-10-1082 polymorphisms with the susceptibility to hepatitis C virus genotype 4 infection and response to pegylated interferon-α and ribavirin therapy.MethodsIL28B, TGF-β1 and TNF-α genes polymorphisms were genotyped using polymerase chain reaction (PCR)-based restriction fragment length polymorphism assay while IL-10 gene polymorphism was detected by sequence specific primer-PCR in 220 healthy individuals and 440 hepatitis C infected patients (220 sustained virological response and 220 non-responder to combination therapy).ResultsIL28 B CT and TT, TGF-β1 CT and TT and TNF-α AG and AA genotypes were significantly associated with susceptibility to hepatitis C infection and response to therapy. While no association was found between IL-10 gene polymorphism and susceptibility to HCV infection and response to treatment.ConclusionsThese results suggested that inheritance of IL28B CT and TT, TGF-β1 CT and TT and TNF-α AG and AA genotypes which appear to affect the cytokine production may be associated with susceptibility to HCV infection and resistance to combined antiviral therapy.  相似文献   

14.
Several genes encoding different cytokines may play crucial roles in host susceptibility to lung cancer, since cytokine production capacity varies among individuals and depends on cytokine gene polymorphisms. The association between cytokine gene polymorphisms with primary lung carcinoma was investigated. DNA samples were obtained from a Turkish population of 44 patients with primary lung cancer, and 59 healthy control subjects. All genotyping (IFN-gamma, TGF-beta1, TNF-alpha, IL-6 and IL-10) experiments were performed using sequence-specific primers (SSP)-PCR. When compared to the healthy controls, the frequencies of high/intermediate producing genotypes of IL-10 and low producing genotype of TNF-alpha were significantly more common in the patient group. It is noteworthy that lung cancer patients with the TGF-beta T/T genotype in codon 10 had statistically longer survival compared to those having the C/C genotype (Kaplan-Meier survival function test, log rank significance = 0.014). These results suggest that IL-10, TNF-alpha and TGF-beta1 gene polymorphisms may affect host susceptibility to lung cancer and the outcome of the patients.  相似文献   

15.
IL-12 and IL-23 are heterodimeric cytokines involved in the induction of Th1 and Th17 immune responses. Previous work indicated that a region on chromosome 11 encoding the IL-12p40 subunit regulates strain differences in susceptibility to murine trinitrobenzene sulfonic acid-induced colitis. In addition, this region determines strain differences in LPS-induced IL-12 responses. In this study, we investigated how polymorphisms in the coding region of murine Il12b influence IL-12 and IL-23 heterodimer formation. Transfection studies using constructs containing IL-12p35 linked to IL-12p40 from the colitis-resistant C57BL/6 strain or to the polymorphic p40 variant from the colitis-susceptible SJL/J strain demonstrated that SJL/J-derived p40 constructs synthesized significantly more IL-12p70 than did constructs harboring the C57BL/6-p40 variant. This could not be attributed to differences in synthesis rate or secretion, implicating a greater affinity of SJL/J-derived IL-12p40 for its IL-12p35 subunit. This greater affinity is also associated with increased IL-23 synthesis. In addition, C57BL/6 mice transgenic for the SJL/J 40 variant synthesized significantly more IL-12p70 upon LPS challenge and were more prone to develop colonic inflammation than did C57BL/6 mice transgenic for the C57BL/6-p40 variant. The more efficient binding of the polymorphic Il12b variant to p35 and p19 is most likely due to conformational changes following differential glycosylation as a consequence of the polymorphism. The high synthesis rate of the mature cytokines resulting from this efficient binding can lead to rapid proinflammatory skewing of immune responses and distortion of the homeostatic balance underlying the greater susceptibility for colitis.  相似文献   

16.
Astrocytes have the capacity to secrete or respond to a variety of cytokines including IL-1, IL-6, IL-3, and TNF-alpha. In this study, we have examined the capacity of astrocytes to secrete TNF-alpha in response to a variety of biologic stimuli, particularly cytokines such as IL-1 and IFN-gamma, which are known to be present in the central nervous system during neurologic diseases associated with inflammation. Rat astrocytes do not constitutively produce TNF-alpha, but have the ability to secrete TNF-alpha in response to LPS, and can be primed by IFN-gamma to respond to a suboptimal dose of LPS. IFN-gamma and IL-1 beta alone do not induce TNF-alpha production, however, the combined treatment of IFN-gamma and IL-1 beta results in a striking synergistic effect on astrocyte TNF-alpha production. Astrocyte TNF-alpha protein production induced by a combined treatment of either IFN-gamma/LPS or IFN-gamma/IL-1 beta occurs in a dose- and time-dependent manner, and appears to require a "priming signal" initiated by IFN-gamma, which then renders the astrocyte responsive to either a suboptimal dose of LPS or IL-1 beta. Astrocyte TNF-alpha production by IFN-gamma/LPS stimulation can be inhibited by the addition of anti-rat IFN-gamma antibody, whereas IFN-gamma/IL-1-induced TNF-alpha production is inhibited by antibody to either IFN-gamma or IL-1 beta. Polyclonal antisera reactive with mouse macrophage-derived TNF-alpha neutralized the cytotoxicity of IFN-gamma/LPS and IFN-gamma/IL-1 beta-induced astrocyte TNF-alpha, demonstrating similarities between these two sources of TNF-alpha. We propose that astrocyte-produced TNF-alpha may have a pivotal role in augmenting intracerebral immune responses and inflammatory demyelination due to its diverse functional effects on glial cells such as oligodendrocytes and astrocytes themselves.  相似文献   

17.
Lipid A, the membrane anchor portion of LPS, is responsible for the endotoxin activity of LPS and induces many inflammatory responses in macrophages. Monophosphoryl lipid A (MPL), a lipid A derivative lacking a phosphate residue, induces potent immune responses with low toxicity. To elucidate the mechanism underlying the low toxicity of MPL, we examined the effects of MPL on the secretion of proinflammatory cytokines by mouse peritoneal macrophages, a murine macrophage-like cell line (RAW 264.7), and a human macrophage-like cell line (THP-1). MPL enhanced the secretion of TNF-alpha, but not that of IL-1beta, whereas Escherichia coli-type lipid A (natural source-derived and chemically synthesized lipid A) enhanced the secretion of both cytokines. Although MPL enhanced the levels of IL-1beta mRNA and IL-1beta precursor protein to levels similar to those induced by lipid A, IL-1beta precursor processing in MPL-treated cells was much lower than that in E. coli-type lipid A-treated ones. Moreover, MPL, unlike E. coli-type lipid A, failed to induce activation of caspase-1, which catalyzes IL-1beta precursor processing. These results suggest that an immune response without activation of caspase-1 or secretion of IL-1beta results in the low toxicity of this adjuvant.  相似文献   

18.
Antioxidants attenuate the plasma cytokine response to exercise in humans.   总被引:12,自引:0,他引:12  
Exercise increases plasma TNF-alpha, IL-1beta, and IL-6, yet the stimuli and sources of TNF-alpha and IL-1beta remain largely unknown. We tested the role of oxidative stress and the potential contribution of monocytes in this cytokine (especially IL-1beta) response in previously untrained individuals. Six healthy nonathletes performed two 45-min bicycle exercise sessions at 70% of Vo(2 max) before and after a combination of antioxidants (vitamins E, A, and C for 60 days; allopurinol for 15 days; and N-acetylcysteine for 3 days). Blood was drawn at baseline, end-exercise, and 30 and 120 min postexercise. Plasma cytokines were determined by ELISA and monocyte intracellular cytokine level by flow cytometry. Before antioxidants, TNF-alpha increased by 60%, IL-1beta by threefold, and IL-6 by sixfold secondary to exercise (P < 0.05). After antioxidants, plasma IL-1beta became undetectable, the TNF-alpha response to exercise was abolished, and the IL-6 response was significantly blunted (P < 0.05). Exercise did not increase the percentage of monocytes producing the cytokines or their mean fluorescence intensity. We conclude that in untrained humans oxidative stress is a major stimulus for exercise-induced cytokine production and that monocytes play no role in this process.  相似文献   

19.
Connor TJ  Kelly JP  McGee M  Leonard BE 《Life sciences》2000,67(13):1601-1612
In this study we examined the effects of methylenedioxymethamphetamine (MDMA) administration on responsiveness to an in vivo immune challenge with lipopolysaccharide (LPS; 100 microg/kg; i.p.). LPS produced an increase in circulating IL-1beta and TNF-alpha in control animals. MDMA (20 mg/kg; i.p.) significantly impaired LPS-induced IL-1beta and TNF-alpha secretion. The suppressive effect of MDMA on IL-1beta secretion was transient and returned to control levels within 3 hours of administration. In contrast, the MDMA-induced suppression of TNF-alpha secretion was evident for up to 12 hours following administration. In a second study we examined the effect of co-administration of MDMA (5, 10 and 20 mg/kg; i.p.) on LPS-induced IL-1beta and TNF-alpha secretion, and demonstrated that all three doses potently suppressed LPS-induced TNF-alpha secretion, but only MDMA 10 and 20 mg/kg suppressed LPS-induced IL-1beta secretion. In addition, serum MDMA concentrations displayed a dose-dependent increase, with the concentrations achieved following administration of 5 and 10 mg/kg being in the range reported in human MDMA abusers. In order to examine the possibility that the suppressive effect of MDMA on IL-1beta and TNF-alpha could be due to a direct effect of the drug on immune cells, the effect of in vitro exposure to MDMA on IL-1beta and TNF-alpha production in LPS-stimulated diluted whole blood was evaluated. However IL-1beta or TNF-alpha production were not altered by in vitro exposure to MDMA. In conclusion, these data demonstrate that acute MDMA administration impairs IL-1beta and TNF-alpha secretion following an in vivo LPS challenge, and that TNF-alpha is more sensitive to the suppressive effects of MDMA than is IL-1beta. However the suppressive effect of MDMA on IL-1beta and TNF-alpha could not be attributed to a direct effect on immune cells. The relevance of these findings to MDMA-induced immunomodulation is discussed.  相似文献   

20.
The cells of innate and adaptive immunity, although activated by different ligands, engage in cross talk to ensure a successful immune outcome. To better understand this interaction, we examined the demographic picture of individual TLR (TLRs 2-9) -driven profiles of eleven cytokines (IFN-alpha/beta, IFN-gamma, IL-12p40/IL-12p70, IL-4, 1L-13, TNF-alpha, IL-1beta, IL-2, IL-10) and four chemokines (MCP-1, MIP1beta, IL-8, and RANTES), and compared them with direct T-cell receptor triggered responses in an assay platform using human PBMCs. We find that T-cell activation by a combination of anti-CD3/anti-CD28/PHA induced a dominant IL-2, IL-13, and Type-II interferon (IFN-gamma) response without major IL-12 and little Type-I interferon (IFN-alphabeta) release. In contrast, TLR7 and TLR9 agonists induced high levels of Type-I interferons. The highest IFN-gamma levels were displayed by TLR8 and TLR7/8 agonists, which also induced the highest levels of pro-inflammatory cytokines IL-12, TNF-alpha, and IL-1beta. Amongst endosomal TLRs, TLR7 displayed a unique profile producing weak IL-12, IFN-gamma, TNF-alpha, IL-1beta, and IL-8. TLR7 and TLR9 resembled each other in their cytokine profile but differed in MIP-1beta and MCP1 chemokine profiles. Gram positive (TLR2, TLR2/6) and gram negative (TLR4) pathogen-derived TLR agonists displayed significant similarities in profile, but not in potency. TLR5 and TLR2/6 agonists paralleled TLR2 and TLR4 in generating pro-inflammatory chemokines MCP-1, MIP-1beta, RANTES, and IL-8 but yielded weak TNF-alpha and IL-1 responses. Taken together, the data show that diverse TLR agonists, despite their operation through common pathways induce distinct cytokine/chemokine profiles that in turn have little or no overlap with TCR-mediated response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号