首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 361 毫秒
1.
基于细胞Raf/MEK/ERK信号通路与病毒复制的关系,应用Western印迹检测 p-ERK1/2蛋白的表达、用终点滴定法测定病毒增殖量(TCID50),以及观察感染细胞的细胞病变效应(CPE)等,揭示单纯疱疹病毒Ⅱ型(HSV-2)复制与 ERK通路的关系. 结果表明,HSV-2的复制可引起细胞ERK通路的活化;用U0126预先抑制ERK通路的活化,或用特异性siRNA敲减MEK1/2基因的表达可显著地抑制病毒复制.提示ERK信号通路以及MEK1/2蛋白对HSV-2的复制具有重要的作用.该研究对进一步阐明细胞ERK通路各激酶蛋白在病毒复制中的作用机制、寻找抗病毒作用靶标等奠定了良好的基础.  相似文献   

2.
目的:探讨白藜芦醇(Res)是否通过下调ERK激酶/胞外信号调节激酶/原癌基因(MEK/ERK/c-Jun)信号通路抑制小剂量过氧化氢(H2O2)诱导肺癌细胞增殖。方法:采用MTS实验检测小剂量20μM H2O2以及分别加入MEK阻断剂U0126和Res后H2O2对肺癌细胞NCI-H1395增殖的影响,采用Western Blot检测H2O2对ERK1/2和Akt蛋白磷酸化水平以及加入Res后H2O2对MEK、ERK1/2和c-Jun蛋白磷酸化水平的影响。结果:小剂量H2O2对肺癌细胞NCI-H1395具有促增殖作用,H2O2通过活化ERK1/2和Akt蛋白的磷酸化水平促进肺癌细胞NCI-H1395增殖,加入MEK阻断剂U0126后H2O2对肺癌细胞NCI-H1395增殖作用降低(P<0.05)。Res可抑制H2O2诱导的肺癌细胞NCI-H1395增殖,加入Res后,H2O2引起的MEK、ERK1/2和c-Jun蛋白磷酸化水平均降低(P<0.05)。结论:小剂量H2O2对肺癌细胞NCI-H1395具有促增殖作用,Res通过抑制MEK/ERK/c-Jun信号通路来抑制H2O2对肺癌细胞NCI-H1395的促增殖作用,其具体机制还需进一步研究。  相似文献   

3.
衣原体感染可激活宿主细胞的MEK/ERK信号通路,但该信号通路对表原体生长的影响尚不清楚.通过Western blot和免疫荧光试验分别检测MEK/ERK信号通路阻断后沙眼衣原体(Chlamydia trachomatis,Ct)主要外膜蛋白(MOMP)表达及沙眼衣原体感染滴度的变化.研究MEK/ERK信号通路对沙眼衣原体生长的影响.研究发现,MEK/ERK信号通路阻断后MOMP表达减少,同时衣原体感染滴度也明显降低.结果表明沙眼衣原体的生长依赖MEK/ERK信号通路的激活.  相似文献   

4.
探讨MEK/ERK1/2信号通路在Cyclosporin A(CsA)诱导滋养细胞表达titin中的作用。应用RT-PCR、Western blot检测CsA诱导的滋养细胞titin的表达水平,Western blot检测CsA作用于滋养细胞后ERK1/2的活化程度,并观察MEK特异性抑制剂U0126对其mRNA转录的影响。发现CsA以时间和剂量依赖方式诱导titin表达,并刺激滋养细胞ERK1/2的活化,U0126以剂量依赖方式抑制CsA诱导的titin表达。结果表明CsA通过活化MEK/ERK1/2信号通路诱导滋养细胞titin 的表达,改变其生物学行为,从而有利于胚胎着床及早期发育。  相似文献   

5.
ERK3是ERK家族中结构较为独特的成员,尤其在分子生物学特征上与ERK家族其他成员明显不同,如基因结构中外显子之间的大内含子、蛋白质结构中活化环的丝氨酸单磷酸化位点以及激酶C端的延伸序列等.ERK3具有独特的丝氨酸单磷酸化位点,导致所有以苏氨酸/酪氨酸双磷酸化位点为磷酸化靶点的MEK分子均不能活化ERK3.ERK3的C端延伸序列能与细胞周期蛋白D3结合并调控ERK3的亚细胞定位,从而影响ERK3对细胞周期的调节.据目前文献推测,ERK3调控细胞周期的信号通路可能为:Ras→B-Raf→ERK3激酶→ERK3→G1期CDK复合物减少→S期抑制因子增多→细胞增殖阻滞于S期→细胞停止增殖,进入分化.此外,ERK3信号通路的活化与细胞分化、胚胎发育、胰岛素分泌以及肿瘤的发生密切相关.  相似文献   

6.
目的:探讨小檗碱对肿瘤坏死因子-α(TNF-α)所致人肝癌细胞株HepG2胰岛素抵抗的缓解作用及分子机制。方法:采用10ng/m L TNF-α诱导HepG2细胞产生胰岛素抵抗,同时以1μmol/L小檗碱处理细胞,通过Western blotting检测胰岛素通路信号分子(IRS1、AKT)和TNF-α通路信号分子(Traf2、MEKK1、MEK1/2、ERK1/2)的蛋白表达。此外,通过过表达或抑制TNF-α通路的信号分子(MEK1、ERK2)进一步探讨小檗碱靶点。结果:TNF-α抑制HepG2细胞AKT(Thr308、Ser473位点)和IRS1(酪氨酸位点)的磷酸化(P0.05),促进IRS1(Ser307位点)和ERK1/2的磷酸化(P0.05),而这一作用能够被小檗碱所逆转(P0.05)。同时,TNF-α对AKT活性的抑制作用能够被ERK1/2或MEK1/2的抑制剂拮抗(P0.05)。此外,小檗碱并不能改善持续激活型ERK2(CA)或MEK1(CA)对胰岛素通路的抑制作用(P0.05),但是能阻碍Traf2与MEKK1的相互作用(P0.05)。结论:小檗碱通过抑制Traf2-MEKK1-MEK-ERK通路改善TNF-α诱导的胰岛素抵抗。  相似文献   

7.
在脑缺血病灶中,中心区神经元坏死为主,周围以缺血半暗带凋亡为主,抑制半暗带细胞的凋亡,可以减少细胞的死亡和脑梗死的面积,因此改善半暗带是治疗脑卒中的关键环节.目前发现MAPK分布于整个中枢神经系统中,MEK/ERK信号通路参与细胞生长、发育、细胞抗凋亡等过程,在脑缺血再灌注损伤过程中有MEK/ERK信号通路的参与,MEK/ERK通路通过影响Bcl-2家族成员的活化和表达调控内源性凋亡途径,ERK通过对细胞周期的调控,抑制胶质细胞大量活化和过度增殖,减少了有害因子并改善局部微循环,从而减少神经元的凋亡.可能为脑血管的防治开辟一条新的途径.本文就MEK/ERK信号通路的结构特点与脑缺血再灌注损伤相关作用机制作一综述.  相似文献   

8.
在人的某些癌症细胞中,组蛋白H3K27me3甲基化酶EZH2基因存在过表达的现象,很多研究已经证明,这可能是受MEK ERK信号通路调控的.为了确定这种调控模式在小鼠细胞系中是否同样存在,以及MEK ERK信号通路是否同时调控H3K27me3甲基化酶EZH1基因和去甲基化酶UTX、JMJD3基因的表达,用RT PCR和Western印迹方法检测不同浓度的MEK ERK抑制剂U0126(0、10、20、40 μmol/L)对C2C12、C127、NIH3T3三种小鼠细胞系处理后,EZH1、EZH2基因和UTX、JMJD3基因表达变化.结果显示:MEK-ERK抑制剂处理后,3种细胞中EZH1和EZH2基因的表达与对照相比都有不同程度的降低,其中EZH2基因表达变化在C2C12、NIH3T3两种细胞达到显著水平(P<0.05). H3K27me3去甲基化酶UTX、JMJD3基因在3种细胞中表达均有升高,JMJD3升高达到显著水平(P<0.05).因此,在小鼠细胞系MEK ERK信号通路可能参与调控EZH2、JMJD3基因的表达,但对EZH1、UTX基因的表达调控作用不明显.
关键词MEK ERK信号通路;  相似文献   

9.
为了探讨TLR2和TLR4对新生儿免疫细胞中Th1/Th2细胞因子的影响,本研究采用LPS和PGN刺激新生儿脐带血单个核细胞、成人外周血单个核细胞和人肥大细胞,并用特异性信号分子抑制剂PD98059处理单核细胞和肥大细胞,测定不同处理组ERK的磷酸化强度、IL-6、IL-12、IL-13和RANTES细胞因子水平以及HMC-1细胞脱颗粒情况。研究显示,经过LPS或PGN刺激后,单核细胞和肥大细胞中ERK的磷酸化强度与对照组相比均显著升高(p0.05);通过LPS和PGN共同刺激后,脐带血单个核细胞中ERK的磷酸化高于单个配体刺激。在添加了ERK特异性抑制剂PD98059后,LPS和PGN共刺激的脐带血单个核细胞中IL-6、IL-12和IL-13浓度显著下降,而RANTES未显示明显抑制。经PGN刺激后HMC-1细胞的β-hexosaminidase释放率高于LPS,并且LPS+PGN共刺激的β-hexosaminidase释放率高于单一配体刺激。本研究表明,TLR2/TLR4与LPS/PGN结合后,通过激活ERK信号通路来调节新生儿免疫细胞中Th1/Th2细胞因子,LPS和PGN共刺激对调节新生儿免疫细胞中IL-6、IL-12和IL-13细胞因子具有协同作用。  相似文献   

10.
Cyclosporin A通过MEK/ERK1/2信号通路调节滋养细胞titin表达   总被引:1,自引:0,他引:1  
探讨MEK/ERK1/2信号通路在CyclosporinA(CsA)诱导滋养细胞表达titin中的作用。应用RT—PCR、Western blot检测CsA诱导的滋养细胞titin的表达水平,Western blot检测CsA作用于滋养细胞后ERK1/2的活化程度,并观察MEK特异性抑制剂U0126对其mRNA转录的影响。发现CsA以时间和剂量依赖方式诱导titin表达,并刺激滋养细胞ERK1/2的活化,U0126以剂量依赖方式抑制CsA诱导的titin表达。结果表明CsA通过活化MEK/ERK1/2信号通路诱导滋养细胞titin的表达,改变其生物学行为,从而有利于胚胎着床及早期发育。  相似文献   

11.
本研究通过阐明MEK1和MEK2亚型在单纯疱疹病毒Ⅱ型(herpes simplex virus type 2,HSV2)复制中介导的Raf/MEK/ERK(简称ERK)通路活化中的作用,以期进一步阐明该通路调控病毒复制的机制.研究中应用了MEK抑制剂U0126、针对MEK1和MEK2的特异性小干扰RNA(small ...  相似文献   

12.
微波辐射对PC12细胞Raf/MEK/ERK信号通路相关分子表达的影响   总被引:1,自引:0,他引:1  
体外培养PC12细胞,将其诱导分化为神经元后,建立微波辐射细胞模型,采用免疫印迹技术和图像分析技术研究微波辐射后Raf/MEK/ERK信号通路相关分子的动态表达变化规律,进一步探讨微波辐射损伤的分子机制。结果发现,微波辐射后6h~3d,假辐射组和辐射组PC12细胞中Raf-1、ERK表达均呈先增加后减少趋势,两组差别不显著,但辐射组Raf-1、ERK和CREB的磷酸化水平均较假辐射组明显升高,表明Raf/MEK/ERK信号通路活化增强可能是微波辐射致神经细胞损伤的重要机制。  相似文献   

13.
Gab2是支架蛋白Gabs家族中的重要成员.该家族蛋白通过介导膜受体与信号转运蛋白间的偶联及各信号分子间的整合参与信号传导.作为支架蛋白,Gab2可被酪氨酸激酶磷酸化激活,接受胞外多种因子刺激,招募富含SH2结构域的信号转运分子,活化下游SHP2/Ras/ERK和PI3K/AKT等一系列信号传导途径,在细胞增殖、分化、...  相似文献   

14.
该文探讨了乳腺癌细胞中表皮生长因子(EGF)介导的MEK非依赖性ERK激活通路。Western blot检测EGF刺激下,siRNA抑制MEK1/2后的T47D细胞的p-ERK水平,以验证T47D细胞中存在EGF介导的MEK非依赖性ERK激活的通路。接着使用可能参与MEK非依赖性ERK激活的激酶的小分子抑制剂抑制相关激酶(AC、PKC、Src、PI3K、PDK1和Akt)活性后,检测T47D细胞EGF介导ERK的磷酸化水平。siRNA抑制MEK1/2表达后,T47D细胞在EGF刺激后的仍保留部分p-ERK,即在T47D细胞中,存在EGF介导的MEK非依赖性的ERK磷酸化通路。小分子抑制剂抑制AC、PKC、Src对MEK非依赖性ERK激活途径影响不大。而使用小分子抑制剂抑制PI3K、PDK1和Akt后,ERK的磷酸化水平显著降低,提示PI3K/Akt通路下游的激酶参与T47D中EGF介导的MEK非依赖性ERK激活途径。siRNA干扰PI3K/Akt通路下游PBK/TOPK后并使用U0126抑制MEK功能后,几乎检测不到p-ERK,提示PBK/TOPK参与T47D细胞中EGF介导的MEK非依赖性ERK激活途径。乳腺癌抗雌激素药物耐药株T47D细胞存在EGF介导的MEK非依赖性ERK激活途径,且该途径受PI3K/Akt下游的PBK/TOPK调控。  相似文献   

15.
为了探讨在人永生化支气管上皮细胞BEP2D细胞中,Smad4分子对 ERK/MAPK通路的作用,我们用RNA干扰的方法分别设计了两对Smad4 siRNA,并使BEP2D细胞中Smad4靶向沉默,用Western印迹分析了细胞内ERK激酶和MEK激酶磷酸化水平的变化.结果发现,当Smad4表达沉默后,ERK激酶磷酸化水平未变,MEK激酶磷酸化水平有所降低;再加TGF-β1诱导后ERK激酶和MEK激酶磷酸化水平均显著降低至基础水平以下.结果表明在BEP2D细胞中,Smad4的缺失抑制TGF-β1对ERK/MAPK通路的活化,故提出TGF β活化ERK/MAPK通路需要Smad4存在的假设.  相似文献   

16.
丙戊酸钠活化大鼠海马和额叶ERK-1/2信号传导通路   总被引:2,自引:0,他引:2  
为探讨慢性服用丙戊酸钠对中枢神经系统细胞外调控激酶 (ERK) 1/ 2信号传导通路活性的影响 ,阐明丙戊酸钠治疗躁狂抑郁症作用的可能分子机制 ,将 4 0只雄性Wistar大鼠随机分为实验组和对照组 ,每组各 2 0只 .实验组大鼠用含丙戊酸钠的饲料喂养 ,对照组大鼠用常规饲料喂养 ,4周后取大鼠海马和额叶组织制备蛋白质样本 ,蛋白质印迹方法分析海马和额叶组织丝裂原活化的蛋白激酶激酶 (MEK)、ERK 1/ 2、MAPK活化的蛋白激酶 1(RSK1)、cAMP效应元件结合因子 (CREB)的磷酸化水平以及Bcl 2的表达水平 ,电泳迁移率变动分析(EMSA)方法分析海马和额叶组织激活蛋白 1(AP 1)的DNA结合活性 .与对照组比较 ,丙戊酸钠显著增强海马和额叶MEK、ERK 1/ 2、RSK1、CREB和AP1的活性 ,上调海马和额叶Bcl 2的表达 .结果表明 :慢性服用丙戊酸钠激活中枢神经系统ERK 1/ 2信号传导通路、上调中枢神经系统Bcl 2蛋白表达 ,这些作用可能与丙戊酸钠治疗躁狂抑郁症的作用有关  相似文献   

17.
为了揭示肠道病毒71型(enterovirus71,EV71)的复制与宿主细胞Raf/MEK/ERK信号通路(简称ERK通路)的相互关系,本研究应用临床诊断为手足口病的患儿疱疹液,通过易感细胞分离培养、RT-PCR及序列测定,以及Western印迹技术等方法,成功分离到EV71临床株.进一步用该分离株感染易感细胞,通过观察宿主细胞p-ERK1/2蛋白磷酸化水平、病毒特异性衣壳蛋白VP1水平、病毒半数组织培养感染量(50%tissue culture infectious dose,TCID50),以及感染细胞的CPE等指标,以期揭示ERK通路在EV71复制的作用.结果表明,EV71的复制可引起细胞ERK通路的活化;而用MEK1/2特异性的抑制剂U0126预先抑制ERK通路的活化,可显著地降低受染细胞上清液中的病毒的感染滴度(以TCID50表示)、受染细胞中EV71VP1蛋白水平、受染细胞中EV71核酸水平,以及受染细胞的细胞病变效应(cytopathic effect,CPE).提示ERK信号通路的活化对EV71的复制具有重要的作用.本研究为进一步阐明EV71在宿主细胞内的复制机制、寻找新型抗病毒靶标等研究奠定了良好的基础.  相似文献   

18.
细胞信号转导异常可揭示人类疾病发生的本质, 一些病毒的致病机制即源于其蛋白所致宿主细胞内信号转导的紊乱. 丙型肝炎病毒(HCV)感染是引起人类严重肝脏疾病的主要病因, 但致病机制尚未明确. HCV包膜蛋白2(E2蛋白)能介导病毒吸附并结合至靶细胞表面, 此乃HCV感染的前提及首发事件. 推测HCV E2蛋白经与其受体(人CD81)的相互作用而将病毒感染信号传递至宿主细胞内, 使细胞增殖和分化异常, 从而导致感染细胞发生早期病变. 为进一步验证此致病机制, 研究了HCV E2蛋白等诸因素对差异表达人CD81的U937, Molt-4细胞内MAPK/ERK途径的影响, 结果表明, HCV E2蛋白可特异性激活细胞内MAPK/ERK途径, 而HCV E2单抗、CD81单抗、 慢性HCV感染患者血清或MAPK/ERK途径上游MEK1的抑制剂(PD98059)均不同程度地减弱或抑制HCV E2蛋白对MAPK/ERK的激活. 此外, PD98059尚可抑制HCV E2蛋白对MAPK/ERK途径下游转录因子Elk-1的活化. 研究认为, HCV E2蛋白经其相应受体引发的宿主细胞跨膜信号转导异常很可能是HCV的致病机制之一.  相似文献   

19.
ERK7是细胞外信号调节激酶家族中的新成员.尽管ERK7激酶的活化环上含有ERK家族成员共有的TEY基序,但是在活化上与其它ERK家族成员截然不同,ERK7无需典型活化ERK的细胞外刺激或JNK和p38激酶活化物而发生自磷酸化并足以使其在缺乏上游激酶时发生活化,且发现ERK7中非激酶结构域的C端区域调节其结构性活化、核定位、生长抑制.此外,N端的20个氨基酸作为ERK7降解的首要决定因素调节ERK7的表达.新近研究表明ERK7与乳腺肿瘤、神经元分化、胚胎发生密切相关.本文就ERK7的结构特性活化、调控及功能等作了综述.  相似文献   

20.
柴胡提取物诱导人类白血病细胞HL-60的细胞凋亡从而抑制其细胞生长.为了研究该过程的作用机理,我们研究了丝裂原活化蛋白激酶(MAPKs),包括胞外信号调节激酶(ERK1/2),c-jun氨基末端蛋白激酶(JNK)和p38丝裂原活化蛋白激酶(MAPK),在该过程中的磷酸化特征与动态变化.结果表明,柴胡提取物显著的增加了p38丝裂原活化蛋白激酶和胞外信号调节激酶(ERK1/2)的磷酸化作用,其增加值在测试范围内与测试剂量和作用时间成正相关,但在柴胡提取物诱导人类白血病细胞HL-60的细胞凋亡过程中,没有发现对氨基末端蛋白激酶(JNK)表现出磷酸化活性.柴胡提取物诱导白血病HL-60的细胞凋亡部分归结于对p38丝裂原活化蛋白激酶的上调节作用,这种上调节作用能够受到p38 MAPK特异性的抑制剂SB203580的部分逆转,而MEK的抑制剂U0126则对柴胡提取物诱导HL-60细胞凋亡过程中的胞外信号调节激酶(ERK1/2)的磷酸化具有显著的协同效应.这是首次报道柴胡提取物在诱导人白血病细胞HL-60细胞凋亡过程中参与p38丝裂原活化蛋白激酶的磷酸化,同时柴胡提取物作为胞外信号调节激酶(ERK1/2)抑制剂的协同作用物具有相应的药物学功能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号