首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The data obtained indicate that spontaneous mutations in Saccharomyces cerevisiae are formed during DNA replication. With no DNA replication in the lag-period, in the stationary growth phase, spontaneous mutations are not formed in cell culture during the G1 phase of cell cycle. Experimental data show the absence of primary spontaneously occurring DNA lesion accumulation in the cell G1 phase. Spontaneous mutations of yeasts are formed in the S phase of cell cycle, apparently as DNA replication errors. It is established that the frequency of spontaneous reversions of the leu2 gene in Saccharomyces cerevisiae strain NA3-24 increases when the cells are cultivated on the culture medium with different concentrations of leucine.  相似文献   

2.
Multiple strains of Saccharomyces cerevisiae on a single grape vine   总被引:1,自引:0,他引:1  
M. POLSINELLI, P. ROMANO, G. SUZZI AND R. MORTIMER. 1996. On the basis of the levels of secondary product formation four different phenotypes were represented among the 28 strains of Saccharomyces cerevisiae isolated during the spontaneous fermentation of grape juice. The genetic analysis indicated that four different strains, representing each phenotypic class, were derived, one from the other, by mutation. The spontaneous fermentation of a Malvasia must was dominated by different strains of Saccharomyces cerevisiae at different stages of fermentation.  相似文献   

3.
The role of RAD52 epistasis group genes on spontaneous mitotic recombination was examined using three different types of spontaneous mitotic recombination in Saccharomyces cerevisiae. The spontaneous recombination between homologous sequences in a plasmid and a chromosome was essentially unaffected by null mutations in any of the RAD52 epistasis group genes. Recombination between genes in separate autonomously replicating plasmids was reduced 833-fold in a rad52 null mutant, but only 2- to at most 20-fold in rad50, 51, 54, 55, 57 null mutants. Recombination between tandemly repeated heteroalleles in an autonomously replicating plasmid was reduced almost 100-fold in a rad52 null mutant, but is either unaffected or slightly increased in rad50, 51, 54, 55, 57 null mutants. The finding that RAD50, 51, 54, 55, 57 are dispensable or marginally involved in these spontaneous recombinations suggests further that spontaneous mitotic recombination in S. cerevisiae might be processed by other than RAD52 epistasis group.  相似文献   

4.
Humans have used S. cerevisiae to make alcoholic beverages for at least 5000 years and now this super-model research organism is central to advances in our biological understanding. Current models for S. cerevisiae suggest that its population comprises distinct domesticated and natural groups as well as mosaic strains, but we generally know little of the forces which shape its population structure. In order to test the roles that ecology and geography play in shaping the S. cerevisiae species we examined nine variable microsatellite loci in 172 strains of S. cerevisiae isolated from two spontaneous grape juice ferments, soil, flowers, apiaries and bark in New Zealand. Bayesian analysis shows that the S. cerevisiae in NZ comprise a subdivided but interbreeding population that out-crosses ∼20% of the time. Some strains contributing to spontaneous ferments cluster with NZ soil/bark isolates, but others cluster with isolates from French oak barrels. It seems some strains have been globally dispersed by humans in oak barrels while some are locally vectored by insects. These data suggest geography is more important than ecology in shaping S. cerevisiae 's population structure.  相似文献   

5.
In the yeast Saccharomyces cerevisiae the disomy for chromosome XIV resembles the previously described disomy for chromosome IV in that it leads to a significant decrease in spontaneous rho- mutability. The nuclear srm1 mutation, reducing spontaneous rho- mutability, diminishes significantly the mitotic disome stability. So, the mechanisms of spontaneous rho- mutagenesis and mitotic disome stability seem to compete for the function affected by the srm1 mutation.  相似文献   

6.
There appears to be no dearth of mechanisms to explain spontaneous mutagenesis. In the case of base substitutions, data for bacteriophage T4 and especially for E. coli and S. cerevisiae suggest important roles in spontaneous mutagenesis for the error-prone repair of DNA damage (to produce mutations) and for error-free repair of DNA damage (to avoid mutagenesis). Data from the very limited number of studies on the subject suggest that about 50% of the spontaneous base substitutions in E. coli, and perhaps 90% in S. cerevisiae are due to error-prone DNA repair. On the other hand, spontaneous frameshifts and deletions seem to result from mechanisms involving recombination and replication. Spontaneous insertions have been shown to be important in the strongly polar inactivation of certain loci, but it is less important at other loci. Perhaps with continued study, the term "spontaneous mutagenesis" will be replaced by more specific terms such as 5-methylcytosine deamination mutagenesis, fatty acid oxidation mutagenesis, phenylalanine mutagenesis, and imprecise-recombination mutagenesis. While most studies have concentrated on mutator mutations, the most conclusive data for the actual source of spontaneous mutations have come from the study of antimutator mutations. Further study in this area, perhaps along with an understanding of chemical antimutagens, should be invaluable in clarifying the bases of spontaneous mutagenesis.  相似文献   

7.
The origin of the Saccharomyces cerevisiae strains that are responsible for spontaneous grape must fermentation was investigated in a long-established industrial winery by means of two different approaches. First, seven selected components of the analytical profiles of the wines produced by 58 strains of S. cerevisiae isolated from different sites and phases of the production cycle of a Grechetto wine were subjected to Principal Components Analysis. Secondly, the same S. cerevisiae isolates underwent PCR fingerprinting by means of delta primers. The results obtained by both methods demonstrate unequivocally that under real vinification conditions, the S. cerevisiae strains colonising the winery surfaces are the ones that carry out the natural must fermentation.  相似文献   

8.
An ecological study of Saccharomyces cerevisiae strains in spontaneous alcoholic fermentation has been conducted in the same winery for two consecutive years (1994 and 1995). Yeast cells were identified and characterized using mitochondrial DNA restriction analysis. Although a great diversity of wild strains was observed, a sequential substitution of S. cerevisiae strains during the different phases of fermentation was detected. Furthermore, the most frequent strains were encountered in both years, and the dynamic populations were not influenced by climatic conditions. Finally, the Rsa I restriction enzyme produced a species-specific pattern which allowed the identification of all the isolates as S. cerevisiae .  相似文献   

9.
Indigenous fermented foods and beverages play a major role in the diet of African people. The predominant yeast species seen is Saccharomyces cerevisiae, involved in basically three groups of indigenous fermented products: non-alcoholic starchy foods, alcoholic beverages and fermented milk. These products are to a great extent made by spontaneous fermentation and consequently S. cerevisiae often coexists with other microorganisms even though a microbiological succession usually takes place both between and within species. The functions of S. cerevisiae are mainly related to formation of alcohols and other aroma compounds, but stimulation of e.g. lactic acid bacteria, improvement of nutritional value, probiotic effects, inhibition of undesired microorganisms and production of tissue-degrading enzymes may also be observed. Several different isolates of S. cerevisiae have been shown to be involved in the fermentations and some of the isolates show pheno- and genotypic characteristics that deviate from those normally recognised for S. cerevisiae.  相似文献   

10.
M Fasullo  P Giallanza  Z Dong  C Cera  T Bennett 《Genetics》2001,158(3):959-972
Saccharomyces cerevisiae Rad51 is structurally similar to Escherichia coli RecA. We investigated the role of S. cerevisiae RAD51 in DNA damage-associated unequal sister chromatid exchanges (SCEs), translocations, and inversions. The frequency of these rearrangements was measured by monitoring mitotic recombination between two his3 fragments, his3-Delta5' and his3-Delta3'::HOcs, when positioned on different chromosomes or in tandem and oriented in direct or inverted orientation. Recombination was measured after cells were exposed to chemical agents and radiation and after HO endonuclease digestion at his3-Delta3'::HOcs. Wild-type and rad51 mutant strains showed no difference in the rate of spontaneous SCEs; however, the rate of spontaneous inversions was decreased threefold in the rad51 mutant. The rad51 null mutant was defective in DNA damage-associated SCE when cells were exposed to either radiation or chemical DNA-damaging agents or when HO endonuclease-induced double-strand breaks (DSBs) were directly targeted at his3-Delta3'::HOcs. The defect in DNA damage-associated SCEs in rad51 mutants correlated with an eightfold higher spontaneous level of directed translocations in diploid strains and with a higher level of radiation-associated translocations. We suggest that S. cerevisiae RAD51 facilitates genomic stability by reducing nonreciprocal translocations generated by RAD51-independent break-induced replication (BIR) mechanisms.  相似文献   

11.
A system of strains and growth media was developed to allow efficient detection of forward mutation, reversion, complementation, and suppression at the canavanine-resistance (CAN1) locus of Saccharomyces cerevisiae. Genetic fine-structure analysis revealed that the map length is at least 40, and possibly as much as 60 X-ray map units; this is the longest gene map yet reported in S. cerevisiae. Allelic complementation was not observed, despite testing of a large number of allele pairs, and alleles suppressible by the ochre suppressor SUP11 were absent from a sample of 48 spontaneous mutants and occurred infrequently (7%) among a sample of ultraviolet-induced mutants. Infrequent mutant types included canavanine-resistant mutants capable of arginine uptake and alleles thought to represent deletions or inversions. In contrast to previous reports in the literature, the spontaneous forward mutation rate at CAN1 did not increase during meiosis.  相似文献   

12.
The composition of wine yeast populations, present during spontaneous fermentation of musts from two wine-producing areas of Greece (Amyndeon and Santorini) and followed for two consecutive years, were studied using a range of molecular techniques. Internal Transcribed Spacer (ITS) ribotyping was convincingly applied for yeast species identification, proving its usefulness as a reliable tool for the rapid characterization of species composition in yeast population studies. Restriction Fragment Length Polymorphism (RFLP) of mitochondrial DNA (mtDNA) was shown to be a convenient criterion for the detection of intraspecies genetic diversity of both Saccharomyces and non-Saccharomyces isolate populations. Similarly, polymorphism of amplified delta interspersed element sequences provided an additional criterion for S. cerevisiae strain differentiation. Comparative analysis of S. cerevisiae genetic diversity, using mtDNA restriction patterns and delta-amplification profiles, showed a similar discriminative power of the two techniques. However, by combining these approaches it was possible to distinguish/characterize strains of the same species and draw useful conclusions about yeast diversity during alcoholic fermentation. The most significant findings in population dynamics of yeasts in the spontaneous fermentations were (i) almost complete absence of non-S.cerevisiae species from fermentations of must originating from the island Santorini, (ii) a well recorded strain polymorphism in populations of non-Saccharomyces species originating from Amyndeon and (iii) an unexpected polymorphism concerning S. cerevisiae populations, much greater than ever reported before in similar studies with wine yeasts of other geographical regions.  相似文献   

13.
AIM: To evaluate whether intraspecific diversity of Saccharomyces cerevisiae in wine fermentations is affected by initial assimilable-nitrogen content. METHODS AND RESULTS: Saccharomyces cerevisiae isolates from two spontaneous commercial wine fermentations started with adequate and inadequate nitrogen amounts were characterized by mitochondrial DNA restriction analysis. Several strains occurred in each fermentation, two strains, but not the same ones, being predominant at frequencies of about 30%. No significant differences were detected by comparing the biodiversity indices of the two fermentations. Cluster analysis demonstrated that the strain distribution was independent of nitrogen content, the two pairs of closely related dominant strains grouping into clusters at low similarity. CONCLUSIONS: The genetic variability of S. cerevisiae in wine fermentations seemed not to depend on the nitrogen availability in must. SIGNIFICANCE AND IMPACT OF THE STUDY: Nitrogen content did not affect the genetic diversity but may have induced a 'selection effect' on S. cerevisiae strains dominating wine fermentations, with possible consequences on wine properties.  相似文献   

14.
Methyl methanesulfonate (MMS)-sensitive mutants of Saccharomyces cerevisiae belonging to four different complementation groups, when homozygous, increase the rate of spontaneous mitotic segregation to canavanine resistance from heterozygous sensitive (canr/+) diploids by 13-to 170-fold. The mms8-1 mutant is MMS and X-ray sensitive and increases the rate of spontaneous mitotic segregation 170-fold. The mms9-1 and mms13-1 mutants are sensitive to X rays and UV, respectively, in addition of MMS, and increase the rate of spontaneous mitotic segregation by 13-fold and 85-fold, respectively. The mutant mms21-1 is sensitive to MMS, X rays and UV and increases the rate of spontaneous mitotic segregation 23-fold.  相似文献   

15.
R Gaxiola  M Corona    S Zinker 《Journal of bacteriology》1996,178(10):2978-2981
FRD, a nuclear and dominant spontaneous mutant of Saccharomyces cerevisiae capable of growing in up to 2 M NaCl, was isolated. Compared with parental cells, the mutant cells have a lower intracellular Na+/K+ ratio, shorter generation times in the presence of 1 M NaCl, and alterations in gene expression.  相似文献   

16.
AIMS: Isolation and characterization of indigenous Saccharomyces cerevisiae strains from 12 grape varieties grown in an experimental vineyard of Apulia. METHODS AND RESULTS: Thirty to 40 colonies from each of the 12 fermentations were obtained at the end stage of spontaneous fermentation. By using morphological and physiological methods and by the PCR analysis of internal transcribed ITS1-5,8S-ITS2, the isolates belonging to Saccharomyces genus were identified. These isolates were further characterized by amplification with S. cerevisiae species- and delta element-specific primers, thus allowing the identification of S. cerevisiae strains selected from each of the 12 fermentations. By means of RFLP analysis of mtDNA, each S. cerevisiae population isolated from a single fermentation appeared to constitute a genetically homogenous group. The comparison of the 12 cultivar-specific mtDNA RFLP patterns, allowed classifying the 12 S. cerevisiae populations into three genetically homogenous groups. The isolated strains fermented vigorously in synthetic and grape juice medium and showed high alcohol and sulphur dioxide (SO(2)) resistance and low hydrogen sulphite (H(2)S) production. CONCLUSIONS: The molecular analysis, in conjunction with the traditional morphological and physiological methods, was useful in discriminating at strain level the indigenous population of S. cerevisiae present in a vineyard of Apulia. The dominant S. cerevisiae strains identified in the 12 fermented musts showed potentially important oenological characteristics. SIGNIFICANCE AND IMPACT OF THE STUDY: The characterization of natural S. cerevisiae strains from several typical Italian grapes grown in a restricted experimental vineyard is an important step towards the preservation and exploitation of yeast biodiversity of Apulia, a relevant wine-producing region. The close relationship between the S. cerevisiae strains from different grapes grown in the same vineyard indicated that the occurrence of native strains is representative of the area rather than of the variety of grapes.  相似文献   

17.
Acquisition of resistance secondary to treatment both by microorganisms and by tumor cells is a major public health concern. Several species of bacteria acquire resistance to various antibiotics through stress-induced responses that have an adaptive mutagenesis effect. So far, adaptive mutagenesis in yeast has only been described when the stress is nutrient deprivation. Here, we hypothesized that adaptive mutagenesis in yeast (Saccharomyces cerevisiae and Candida albicans as model organisms) would also take place in response to antifungal agents (5-fluorocytosine or flucytosine, 5-FC, and caspofungin, CSP), giving rise to resistance secondary to treatment with these agents. We have developed a clinically relevant model where both yeasts acquire resistance when exposed to these agents. Stressful lifestyle associated mutation (SLAM) experiments show that the adaptive mutation frequencies are 20 (S. cerevisiae -5-FC), 600 (C. albicans -5-FC) or 1000 (S. cerevisiae - CSP) fold higher than the spontaneous mutation frequency, the experimental data for C. albicans -5-FC being in agreement with the clinical data of acquisition of resistance secondary to treatment. The spectrum of mutations in the S. cerevisiae -5-FC model differs between spontaneous and acquired, indicating that the molecular mechanisms that generate them are different. Remarkably, in the acquired mutations, an ectopic intrachromosomal recombination with an 87% homologous gene takes place with a high frequency. In conclusion, we present here a clinically relevant adaptive mutation model that fulfils the conditions reported previously.  相似文献   

18.
We herein evaluate intraspecific genetic diversity of fermentative vineyard-associated S. cerevisiae strains and evaluate relationships between grape varieties and geographical location on populational structures. From the musts obtained from 288 grape samples, collected from two wine regions (16 vineyards, nine grape varieties), 94 spontaneous fermentations were concluded and 2820 yeast isolates were obtained that belonged mainly (92%) to the species S. cerevisiae. Isolates were classified in 321 strains by the use of ten microsatellite markers. A high strain diversity (8-43 strains per fermentation) was associated with high percentage (60-100%) of fermenting samples per vineyard, whereas a lower percentage of spontaneous fermentations (0-40%) corresponded to a rather low strain diversity (1-10 strains per fermentation).For the majority of the populations, observed heterozygosity (Ho) was about two to five times lower than the expected heterozygosity (He). The inferred ancestry showed a very high degree of admixture and divergence was observed between both grape variety and geographical region. Analysis of molecular variance showed that 81-93% of the total genetic variation existed within populations, while significant differentiation within the groups could be detected. Results from AMOVA analysis and clustering of allelic frequencies agree in the distinction of genetically more dispersed populations from the larger wine region compared to the less extended region. Our data show that grape variety is a driver of populational structures, because vineyards with distinct varieties harbor genetically more differentiated S. cerevisiae populations. Conversely, S. cerevisiae strains from vineyards in close proximity (5-10 km) that contain the same grape variety tend to be less divergent. Populational similarities did not correlate with the distance between vineyards of the two wine regions. Globally, our results show that populations of S. cerevisiae in vineyards may occur locally due to multi-factorial influences, one of them being the grape variety.  相似文献   

19.
AIMS: Characterization of yeast populations and genetic polymorphism of Saccharomyces cerevisiae strains collected during the short fermentative cycles from the spontaneous fermentations during the artisanal cacha?a production. METHODS AND RESULTS: The prevalent S. cerevisiae strains were analysed by PFG and RAPD-PCR using primers EI1 and M13. The molecular analysis have showed a high degree of genetic polymorphism among the strains within a 24 h fermentative cycle. CONCLUSION: The genetic diversity observed in the S. cerevisiae strains may be occurring due to the existence of a large number of individual genotypes within the species. The unique characteristics of the cacha?a fermentation process probably allows for a faster detection of molecular polymorphisms of yeast strains than other types of fermentations. SIGNIFICANCE AND IMPACT OF THE STUDY: Spontaneous fermentations to produce cacha?a, due to their characteristics, are an excellent model for the study of molecular diversity of S. cerevisiae strains during the production of fermented beverages.  相似文献   

20.
Saccharomyces cerevisiae was transformed with DNA by the lithium acetate method. Mutation of nonselected markers on the transforming vector was observed at a frequency several orders of magnitude higher than spontaneous mutation frequencies. These mutations were shown to be deletions. Linearization of the vector before transformation stimulated deletion formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号