首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Twenty-nine clear-plaque mutants of bacteriophage lambda were isolated from a Shigella dysenteriae lysogen. Three were associated with insertions in the cI gene: two were due to insertion of IS600, and the third resulted from insertion of a new element, IS911. IS911 is 1,250 base pairs (bp) long, carries 27-bp imperfect terminal inverted repeats, and generates 3-bp duplications of the target DNA on insertion. It was found in various copy numbers in all four species of Shigella tested and in Escherichia coli K-12 but not in E. coli W. Analysis of IS911-mediated cointegrate molecules indicated that the majority were generated without duplication of IS911. They appeared to result from direct insertion via one end of the element and the neighboring region of DNA, which resembles a terminal inverted repeat of IS911. Nucleotide sequence analysis revealed that IS911 carries two consecutive open reading frames which code for potential proteins showing similarities to those of the IS3 group of elements.  相似文献   

2.
Transposable elements are important in genome dynamics and evolution. Bacterial insertion sequences (IS) constitute a major group in number and impact. Understanding their role in shaping genomes requires knowledge of how their transposition activity is regulated and interfaced with the host cell. One IS regulatory phenomenon is a preference of their transposases (Tpases) for action on the element from which they are expressed (cis) rather than on other copies of the same element (trans). Using IS911, we show in vivo that activity in cis was ~200 fold higher than in trans. We also demonstrate that a translational frameshifting pause signal influences cis preference presumably by facilitating sequential folding and cotranslational binding of the Tpase. In vitro, IS911 Tpase bound IS ends during translation but not after complete translation. Cotranslational binding of nascent Tpase permits tight control of IS proliferation providing a mechanistic explanation for cis regulation of transposition involving an unexpected partner, the ribosome.  相似文献   

3.
4.
The complete nucleotide sequence of insertion element IS492, which causes reversible inactivation of extracellular polysaccharide production in the marine bacterium Pseudomonas atlantica, is presented. Insertion of IS492 results in the EPS- phenotype, and excision results in restoration of EPS+. DNA sequencing of the site of insertion in the eps locus showed that insertion of IS492 generates a 5-base-pair repeat and that its excision is precise. IS492 is 1,202 nucleotides in length and contains one large open reading frame encoding a protein of 318 amino acids, a candidate for transposition function. No similarity between IS492 and other transposable elements has been found. Unlike the situation with other insertion sequences, no direct or inverted repeats exist at the termini of IS492.  相似文献   

5.
One-ended insertion of IS911.   总被引:2,自引:0,他引:2       下载免费PDF全文
An apparently nonreplicative integration reaction mediated by the insertion sequence IS911 has been analyzed. It is shown to involve the right-end inverted repeat (IRR) of the element and sequences in the flanking vector DNA. The flanking sequences appear to behave as a surrogate IS911 end, since integration is greatly reduced when limited similarities with IRR are eliminated by site-directed mutagenesis. Data are presented which suggest that the activity of the IRR junction results from the proximity of the transposase gene and may therefore reflect preferential transposase recognition of IRR in cis.  相似文献   

6.
IS911 transposition involves a closed circular insertion sequence intermediate (IS-circle) and two IS-encoded proteins: the transposase OrfAB and OrfA which regulates IS911 insertion. OrfAB alone promotes insertion preferentially next to DNA sequences resembling IS911 ends while the addition of OrfA strongly stimulates insertion principally into DNA targets devoid of the IS911 end sequences. OrfAB shares its N-terminal region with OrfA. This includes a helix-turn-helix (HTH) motif and the first three of four heptads of a leucine zipper (LZ). OrfAB binds specifically to IS911 ends via its HTH whereas OrfA does not. We show here: that OrfA binds DNA non-specifically and that this requires the HTH; that OrfA LZ is required for its multimerization; and that both motifs are essential for OrfA activity. We propose that these OrfA properties are required to assemble a nucleoprotein complex committed to random IS911 insertion. This control of IS911 insertion activity by OrfA in this way would assure its dispersion.  相似文献   

7.
IS911 transposition involves a free circular transposon intermediate where the terminal inverted repeat sequences are connected. Transposase synthesis is usually driven by a weak promoter, p(IRL), in the left end (IRL). Circle junction formation creates a strong promoter, p(junc), with a -35 sequence located in the right end and the -10 sequence in the left. p(junc) assembly would permit an increase in synthesis of transposase from the transposon circle, which would be expected to stimulate integration. Insertion results in p(junc) disassembly and a return to the low p(IRL)- driven transposase levels. We demonstrate that p(junc) plays an important role in regulating IS911 transposition. Inactivation of p(junc) strongly decreased IS911 transposition when transposase was produced in its natural configuration. This novel feedback mechanism permits transient and controlled activation of integration only in the presence of the correct (circular) intermediate. We have also investigated other members of the IS3 and other IS families. Several, but not all, IS3 family members possess p(junc) equivalents, underlining that the regulatory mechanisms adopted to fine-tune transposition may be different.  相似文献   

8.
IS200: a Salmonella-specific insertion sequence   总被引:26,自引:0,他引:26  
S Lam  J R Roth 《Cell》1983,34(3):951-960
A new IS element (IS200) has been identified in Salmonella. The sequence was identified as an IS element by the following criteria: its insertion caused the mutation hisD984; six copies of the sequence are present in strain LT2 of S. typhimurium; and transposition of the sequence has been observed on several occasions. IS200 is found in almost all Salmonella species examined but is absent from most other enteric bacteria. The specificity of this element for Salmonella (and the absence of IS1-IS4 from Salmonella) suggest that transfer of insertion sequences between bacterial groups may be less extensive than is commonly believed. Alternatively, the distribution may suggest that these elements play a selectively important role in bacteria.  相似文献   

9.
10.
The narrow host range bacterial strain Azorhizobium caulinodans ORS571 induces the formation of nitrogen-fixing nodules on the root and stem of the tropical legume Sesbania rostrata. Here, a new flavonoid-inducible locus of ORS571 is described, locus 4. The locus was identified and isolated via the occurrence of particular sequences, the gamma and delta elements. These elements are reiterated in the ORS571 genome, linked to symbiotic loci. Sequencing of locus 4 showed the presence of an open reading frame (ORF6) that is flanked downstream by a gamma element and upstream by a delta element. The gamma element is approximately 180 bp in size, and shows homology to the insertion element ISRm3, an insertion sequence belonging to a distinct class of IS elements. The delta element is about 300 bp in size and has homology with repeated sequences found in other Rhizobiaceae. The ORF6 gene product shows a low, but significant homology to the mouse mastocytoma antigen P35B (Szikora et al., EMBO J. 9: 1041-1050, 1990) and to a class of NAD/NADP-binding sugar epimerase/dehydrogenases (Pissowotzki et al., Mol. Gen. Genet. 231: 113-213, 1991). Immediately upstream from ORF6, a nod box-related sequence is present, the arrangement of which is fully consistent with a recently presented model for the nod box structure (Goethals et al., Proc. Natl. Acad. Sci. USA 89: 1646-1650, 1992). Insertional inactivation of ORF6 did not affect the nodulation and fixation performance on S. rostrata. However, on S. formosa roots the nodulation kinetics of such a mutant was clearly affected (about 5 days delay). We propose to call this new symbiotic gene nolK.  相似文献   

11.
Insertion sequence (IS) elements are mobile genetic elements found in prokaryotes. We have identified a repetitive element from Mycoplasma pulmonis, a murine pathogen, that is similar to eubacterial IS elements. By subcloning a single strain of M. pulmonis, we isolated a variant clone in which the IS element had undergone an apparent transposition event. The nucleotide sequences of the element, designated IS 1138, and the target site into which it inserted were determined. IS1138 consists of 1288bp with 18bp perfect terminal inverted repeats. Sequence analysis of the target site before and after insertion of IS1138 identified a 3bp duplication of target DNA flanking the element. The predicted amino acids encoded by the major open reading frame of IS 1138 share significant similarity with the transposases of the IS3 family. Southern hybridization analysis indicates that repetitive sequences similar to IS 1138 are present in most, if not all, strains of M. pulmonis, but Is1138–like sequences were not detected in other mycoplasmal species.  相似文献   

12.
A significant fraction of Escherichia coli intergenic DNA sequences is composed of two families of repeated bacterial interspersed mosaic elements (BIME-1 and BIME-2). In this study, we determined the sequence organization of six intergenic regions in 51 E. coli and Shigella natural isolates. Each region contains a BIME in E. coli K-12. We found that multiple sequence variations are located within or near these BIMEs in the different bacteria. Events included excisions of a whole BIME-1, expansion/deletion within a BIME-2 and insertions of non-BIME sequences like the boxC repeat or a new IS element, named IS1397. Remarkably, 14 out of 14 IS1397 integration sites correspond to a BIME sequence, strongly suggesting that this IS element is specifically associated with BIMEs, and thus inserts only in extragenic regions. Unlike BIMEs, IS1397 is not detected in all E. coli isolates. Possible relationships between the presence of this IS element and the evolution of BIMEs are discussed.  相似文献   

13.
The IS911 bacterial transposable element uses -1 programmed translational frameshifting to generate the protein required for its mobility: translation initiated in one gene (orfA) shifts to the -1 frame and continues in a second overlapping gene (orfB), thus generating the OrfAB transposase. The A-AAA-AAG frameshift site of IS911 is flanked by two stimulatory elements, an upstream Shine-Dalgarno sequence and a downstream stem-loop. We show here that, while they can act independently, these stimulators have a synergistic effect when combined. Mutagenic analyses revealed features of the complex stem-loop that make it a low-efficiency stimulator. They also revealed the dual role of the upstream Shine-Dalgarno sequence as (i) a stimulator of frameshifting, by itself more potent than the stem-loop, and (ii) a mandatory determinant of initiation of OrfB protein synthesis on an AUU codon directly preceding the A6G motif. Both roles rely on transient base pairing of the Shine-Dalgarno sequence with the 3' end of 16S rRNA. Because of its effect on frameshifting, the Shine-Dalgarno sequence is an important determinant of the level of transposase in IS911-containing cells, and hence of the frequency of transposition.  相似文献   

14.
Using a combined in vivo and in vitro approach, we demonstrated that the transposition products generated by IS911 from a dimeric donor plasmid are different from those generated from a plasmid monomer. When carried by a monomeric plasmid donor, free IS911 transposon circles are generated by intra-IS recombination in which one IS end undergoes attack by the other. These represent transposition intermediates that undergo integration using the abutted left (IRL) and right (IRR) ends of the element, the active IRR-IRL junction, to generate simple insertions. In contrast, the two IS911 copies carried by a dimeric donor plasmid not only underwent intra-IS recombination to generate transposon circles but additionally participated in inter-IS recombination. This also creates an active IRR-IRL junction by generating a head-to-tail IS tandem dimer ([IS]2) in which one of the original plasmid backbone copies is eliminated in the formation of the junction. Both transposon circles and IS tandem dimers are generated from an intermediate in which two transposon ends are retained by a single strand joint to generate a figure 8 molecule. Inter-IS figure 8 molecules generated in vitro could be resolved into the [IS]2 form following introduction into a host strain by transformation. Resolution did not require IS911 transposase. The [IS]2 structure was stable in the absence of transposase but was highly unstable in its presence both in vivo and in vitro. Previous studies had demonstrated that the IRR-IRL junction promotes efficient intermolecular integration and intramolecular deletions both in vivo and in vitro. Integration of the [IS]2 derivative would result in a product that resembles a co-integrate structure. It is also shown here that the IRR-IRL junction of the [IS]2 form and derivative structures can specifically target one of the other ends in an intramolecular transposition reaction to generate transposon circles in vitro. These results not only demonstrate that IS911 (and presumably other members of the IS3 family) is capable of generating a range of transposition products, it also provides a mechanistic framework which explains the formation and activity of such structures previously observed for several other unrelated IS elements. This behaviour is probably characteristic of a large number of IS elements.  相似文献   

15.
The nucleotide sequence and genetic analyses of one of the directly repeated sequences flanking the macrolide-lincosamide-streptogramin B drug resistance determinant, ermF, from the Bacteroides fragilis R plasmid, pBF4, suggested that this region is an insertion sequence (IS) element. This 1,155-base-pair element contained partially matched (20 of 25 base pairs) terminal-inverted repeats, overlapping, anti-parallel open reading frames, and nine promoterlike sequences, including three that were oriented outward. Analysis of this sequence revealed no significant nucleotide homology to 13 other known IS elements. Inasmuch as Southern blot hybridization analysis detected homologous sequences in chromosomal DNA and its G+C content (42 mol%) was similar to that of B. fragilis, the data suggested that this element is of Bacteroides origin. Transposition promoted by this element was demonstrated in recA E. coli. Recombinants were recovered by selecting for the activation of a promoterless chloramphenicol resistance gene on the plasmid pDH5110 and were characterized by restriction endonuclease mapping and Southern blot hybridization. We propose that this IS element be designated IS4351.  相似文献   

16.
The radiation sensitivity of Escherichia coli B was first described more than 50 years ago, and the genetic locus responsible for the trait was subsequently identified as lon (encoding Lon protease). We now show that both E. coli B and the first reported E. coli K-12 lon mutant, AB1899, carry IS186 insertions in opposite orientations at a single site in the lon promoter region and that this site represents a natural hot spot for transposition of the insertion sequence (IS) element. Our analysis of deposited sequence data for a number of other IS186 insertion sites permitted the deductions that (i) the consensus target site sequence for IS186 transposition is 5'-(G)(> or =4)(N)(3-6)(C)(> or =4)-3', (ii) the associated host sequence duplication varies within the range of 6 to 12 bp and encompasses the N(3-6) sequence, and (iii) in a majority of instances, at least one end of the duplication is at the G-N (or N-C) junction. IS186-related sequences were absent in closely related bacterium Salmonella enterica serovar Typhimurium, indicating that this IS element is a recent acquisition in the evolutionary history of E. coli.  相似文献   

17.
Shigella sonnei contains repetitive sequences, including an insertion element IS1, which can be isolated as double-stranded DNA fragments by DNA denaturation and renaturation and by treatment with S1 nuclease. In this paper, we describe a method of cloning the IS1 fragments prepared by the S1 nuclease digestion technique into phage M13mp8 RFI DNA. Several clones contained IS1, usually with a few additional bases. We isolated and characterized five other repetitive sequences using this method. One sequence, 1264 base-pairs in length, had terminal inverted repeats and contained two open reading frames. This sequence, called IS600, showed about 44% sequence homology with IS3 and was repeated more than 20 times in the Sh. sonnei chromosome. Another sequence (named IS629, 1310 base-pairs in length), which was repeated six times, was found also to be related to IS3 and thus IS600. Two other sequences (named IS630 and IS640, 1159 and 1092 base-pairs in length, respectively), which were repeated approximately ten times, had characteristic terminal inverted repeats and contained a large open reading frame coding for a protein. The inverted repeat sequences of IS630 were similar to the sequence at one end of IS200, a Salmonella-specific IS element. The fifth sequence, repeated ten times in Sh. sonnei, had about 98% sequence homology with a portion of IS2. The method described here can be applied to the isolation of IS or iso-IS elements present in any other bacterial chromosome.  相似文献   

18.
IS1294, a DNA element that transposes by RC transposition   总被引:1,自引:0,他引:1  
  相似文献   

19.
Insertion of bacterial insertion sequence IS911 can often be directed to sequences resembling its ends. We have investigated this type of transposition and shown that it can occur via cleavage of a single end and its targeted transfer next to another end. The single end transfer (SET) events generate branched DNA molecules that contain a nicked Holliday junction and can be considered as partial transposition products. Our results indicate that these can be processed by the Escherichia coli host independently of IS911-encoded proteins. Such resolution depends on the presence of homologous DNA regions neighbouring the cross-over point in the SET molecule. Processing is often accompanied by sequence conversion between donor and target sequences, suggesting that branch migration is involved. We show that resolution is greatly reduced in a recG host. Thus, the branched DNA-specific helicase, RecG, involved in processing of potentially lethal DNA structures such as stalled replication forks, also intervenes in the resolution of partial IS911 transposition products.  相似文献   

20.
J Mahillon  J Seurinck  J Delcour  M Zabeau 《Gene》1987,51(2-3):187-196
A family of five repetitive sequences (RS) has been isolated from a plasmid DNA library of Bacillus thuringiensis strain berliner 1715. In a previous paper [Mahillon et al., EMBO J. 4(1985)3895-3899] one of these was shown to harbor all the features of an IS element (IS231). Further nucleotide sequence analysis revealed that two other RS, flanking the delta-endotoxin gene, are actually variants of IS231. Comparison of the nucleotide sequences surrounding the iso-IS231 elements showed a unique structural association between some of these elements and the transposon Tn4430. Although these IS231 elements have transposed into Tn4430, both these IS231 s and the transposon Tn4430 remain structurally intact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号