首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We tested whether blood flow to skeletal muscle would increase in proportion to an increase in O2 uptake caused by 2,4-dinitrophenol (DNP). We further tested the metabolic control in the face of a central challenge, hypoxic hypoxia. Three injections of DNP were made at 30-min intervals into the arterial supply of the left hindlimb in anesthetized dogs. Similar experiments were done on a second group of dogs ventilated with 12% O2-88% N2 (DNP and hypoxia). A third group served as time controls. Limb O2 uptake increased in a linear fashion in the DNP group with each injection. The increase in limb O2 uptake fell off with the second and third injections in the DNP and hypoxia group and appeared to be limited by the hypoxia. Limb blood flow increased only with the last injection in that group and not at all in the DNP group. Limb vascular resistance decreased in both the experimental groups relative to the time-related changes in the control group. This became more marked as the O2 extraction ratio exceeded 0.5. Even in the absence of nerve stimulation and active muscle contractions, both distribution and resistance control vessels responded in a coordinated fashion to an increase in O2 uptake. Mild hypoxia enhanced these responses but also appeared to limit a fraction of O2 uptake that may not have been concerned with maintaining tissue energy levels.  相似文献   

3.
4.
Oxygen extraction by canine hindlimb during hypoxic hypoxia   总被引:2,自引:0,他引:2  
  相似文献   

5.
The central program for interaction between the hind limbs, expressed as the time structure of motor discharges in the nerves to the various muscles, was studied in immobilized decerebrate spinal cats during fictitious locomotion. The program of hind limb interaction (alternating or inphase) in the decerebrate cats was shown to be determined by the relations between the flexor hemicenters. The activity of the latter is either antiphased or cophased. The character of activity of the extensor hemicenters is determined secondarily on account of alternating interaction of each of them with the ipsilateral flexor hemicenter. After injection of dopa into the animals the cophased program of hind limb interaction may be determined by the cophased working of the extensor center.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 11, No. 1, pp. 65–73, January–February, 1979.  相似文献   

6.
Oxygen delivery and uptake in dogs during anemic and hypoxic hypoxia   总被引:6,自引:0,他引:6  
  相似文献   

7.
We have examined the relative deficits in tension development and O2 uptake in contracting skeletal muscle during severe hypoxic hypoxia. Anesthetized mongrel dogs were ventilated to maintain an end-tidal PCO2 between 35 and 40 Torr. Venous outflow from the gastrocnemius muscle was measured using an electromagnetic flow probe. The tendon was cut and attached to a strain gauge. The muscle was stimulated to contract isometrically at 2 or 4 Hz for 20 min. Hypoxia (9% O2 in N2) was then imposed for 30 min, followed by 30 min of normoxia. Blood flow first increased in proportion to the contraction frequency and then increased further a similar amount in both groups during hypoxia. O2 extraction and blood flow reached maximal levels during hypoxia in the 2-Hz group. The further O2 deficit that was accumulated during 4 Hz and hypoxia was, therefore, a result of the greater discrepancy between O2 supply and demand. O2 uptake decreased more in hypoxia than did developed tension. These results are best explained by ATP supplementation from nonaerobic energy sources that was promoted by the free-flow condition of hypoxic hypoxia.  相似文献   

8.
The factors that determine maximal O2 uptake (VO2max) and muscle performance during severe, acute hypoxemia were studied in isolated, in situ dog gastrocnemius muscle. Our hypothesis that VO2max is limited by O2 diffusion in muscle predicts that decreases in VO2max, caused by hypoxemia, will be accompanied by proportional decreases in muscle effluent venous PO2 (PvO2). By altering the fraction of inspired O2, four levels of arterial PO2 (PaO2) [21 +/- 2, 28 +/- 1, 44 +/- 1, and 80 +/- 2 (SE) Torr] were induced in each of eight dogs. Muscle arterial and venous circulation was isolated and arterial pressure held constant by pump perfusion. Each muscle worked maximally (3 min at 5-6 Hz, isometric twitches) at each PaO2. Arterial and venous samples were taken to measure lactate, [H+], PO2, PCO2, and muscle VO2. Muscle biopsies were taken to measure [H+] (homogenate method) and lactate. VO2max decreased with PaO2 and was linearly (R = 0.99) related to both PVO2 and O2 delivery. As PaO2 fell, fatigue increased while muscle lactate and [H+] increased. Lactate release from the muscle did not change with PaO2. This suggests a barrier to lactate efflux from muscle and a possible cause of the greater fatigue seen in hypoxemia. The gas exchange data are consistent with the hypothesis that VO2max is limited by peripheral tissue diffusion of O2.  相似文献   

9.
Systemic and intestinal limits of O2 extraction in the dog   总被引:3,自引:0,他引:3  
When systemic delivery of O2 (QO2 = QT X CaO2, where QT is cardiac output and CaO2 is arterial O2 content) is reduced by bleeding, the systemic O2 extraction ratio [ER = (CaO2 - CVO2)/CaO2, where CVO2 is venous O2 content] increases until a critical limit is reached below which O2 uptake (VO2) becomes limited by O2 delivery. During hypovolemia, reflex increases in mesenteric arterial tone may preferentially reduce gut blood flow so that the onset of O2 supply dependence occurs in the gut before other regions. We compared the critical O2 delivery (QO2c) and critical extraction ratio (ERc) of whole body and an isolated segment (30-50 g) of small bowel in seven anesthetized paralyzed dogs ventilated with room air. Systemic QO2 was reduced in stages by controlled hemorrhage as arterial O2 content was maintained, and systemic and gut VO2 and QO2 were measured at each stage. Body QO2c was 7.9 +/- 1.9 ml X kg-1 X min-1 (ERc = 0.69 +/- 0.12), whereas gut O2 supply dependency occurred when gut QO2 was 34.3 +/- 11.3 ml X min-1 X kg gut wt-1 (ERc = 0.63 +/- 0.09). O2 supply dependency in the gut occurred at a higher systemic QO2 (9.7 +/- 2.7) than whole-body QO2c (P less than 0.05). The extraction ratio at the final stage (maximal ER) was less in the gut (0.80 +/- 0.05) than whole body (0.87 +/- 0.06). Thus during reductions in systemic QO2, gut VO2 was maintained by increases in gut extraction of O2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Substantial extrasplanchnic metabolism of estrogens is known to occur in humans and dogs. As part of an investigation into the anatomic sites of such metabolism, the extraction of estrogens by the hind limb of the dog was studied during a constant infusion of [3H]estrone. Simultaneous femoral artery (A) and femoral vein (FV) plasma samples were obtained and analyzed for total radioactivity, unconjugated and conjugated radioactivity, for [3H]estrone and for its metabolites estradiol-17β, estrone sulfate and estrone glucosiduronate. The percent extraction across the hind limb was calculated [100(1-FV/A)]. The mean percent extraction ± SE of total, conjugated and unconjugated radioactivity was 31 ± 3.9, 27 ± 4.4 and 16 ± 3.7 respectively, indicating significant net uptake of these moieties by the hind limb (P<.01). Mean percent extractions ± SE for estrone and estradiol-17β were 40 ± 4.9 and 32 ± 2.7, indicating significant net uptake of these specific unconjugated estrogens by the hind limb (P<.01). The mean percent extraction of estrone glucosiduronate was 16 ± 3.1 indicating significant net uptake of this conjugate (P<.01). However, the mean percent extraction of estrone sulfate was negative (?12 ± 4.1) indicating net production of this conjugate by the hind limb (P<.01). Since the net uptake of total radioactivity cannot be explained on the basis of metabolism by the hind limb, the lymphatics were investigated as an alternate efferent pathway. In similar experiments the thoracic duct was cannulated, the estrogens in lymph were analyzed and compared with those in femoral artery plasma. Each estrogen measured in plasma appeared in lymph within 10 minutes following the start of the [3H]estrone infusion. The lymph/femoral artery concentration ratios reached a plateau at 70–100 minutes after the start of the infusion. The plateau concentrations were 20–70% of those in plasma. It is suggested that removal of estrogens in the lymph may account, in part at least, for the net uptake of total radioactivity across the hind limb calculated from the plasma data.  相似文献   

11.
Acclimatization to hypoxia requires time to complete the adaptation mechanisms that influence oxygen (O(2)) transport and O(2) utilization. Although decreasing hemoglobin (Hb) O(2) affinity would favor the release of O(2) to the tissues, increasing Hb O(2) affinity would augment arterial O(2) saturation during hypoxia. This study was designed to test the hypothesis that pharmacologically increasing the Hb O(2) affinity will augment O(2) transport during severe hypoxia (10 and 5% inspired O(2)) compared with normal Hb O(2) affinity. RBC Hb O(2) affinity was increased by infusion of 20 mg/kg of 5-hydroxymethyl-2-furfural (5HMF). Control animals received only the vehicle. The effects of increasing Hb O(2) affinity were studied in the hamster window chamber model, in terms of systemic and microvascular hemodynamics and partial pressures of O(2) (Po(2)). Pimonidazole binding to hypoxic areas of mice heart and brain was also studied. 5HMF decreased the Po(2) at which the Hb is 50% saturated with O(2) by 12.6 mmHg. During 10 and 5% O(2) hypoxia, 5HMF increased arterial blood O(2) saturation by 35 and 48% from the vehicle group, respectively. During 5% O(2) hypoxia, blood pressure and heart rate were 58 and 30% higher for 5HMF compared with the vehicle. In addition, 5HMF preserved microvascular blood flow, whereas blood flow decreased to 40% of baseline in the vehicle group. Consequently, perivascular Po(2) was three times higher in the 5HMF group compared with the control group at 5% O(2) hypoxia. 5HMF also reduced heart and brain hypoxic areas in mice. Therefore, increased Hb O(2) affinity resulted in hemodynamics and oxygenation benefits during severe hypoxia. This acute acclimatization process may have implications in survival during severe environmental hypoxia when logistic constraints prevent chronic acclimatization.  相似文献   

12.
In order to quantitatively assess the dynamic interactions between different levels of the O2 transport system control hierarchy from the dynamics of the relative contribution by individual cardiovascular and respiratory variables to the response of the system to stress, flow perturbations were introduced in the hind leg of greyhounds by:1) passive motion of the biceps muscle, 2) electrical stimulation (el. stim.) of the muscle nerve, 3) el. stim. of the femoral and sciatic nerve, 4) el. stim. of the proximal end of both nerves, 5) el. stim. of the peripheral end of both nerves, 6) peripheral stimulation after autonomic blockers and 7) peripheral stimulation after Flaxedil. The following variables were continuously measured: upper and lower inflow in the biceps, inflows into the stimulated and the contralateral leg, O2 saturation of the venous outflow from the muscle and the leg, arterial pressure, heart rate, respiratory rate and tidal volume; and their responses to perturbations were characterized by four parameters [delay time, initial slope, maximum (or minimum) and average response]. Of these, the slope was found to be the most sensitive index of stimulus specificity, while the traditionally measured steady state response, although an important consideration for performance adaptation to stress, does not permit a differentiation between the various control mechanisms which mediate the response. These results indicate that the low frequency dynamics of cardiovascular and respiratory performance contain essential information about the type of control arrangement existing at a given moment. Marked differences in both time course and magnitude of flow responses in vascular beds arranged in parallel and in series were observed with corresponding differences in the changes of the O2 content of their respective venous outflows. From the ranking of the four parameters a numerical estimate of the overall response as well as of its peripheral and central components was obtained. Between the different experimental conditions the spectrum of the overall responses ranged from predominance of centrally mediated control mechanisms (as judged by the magnitude of the contribution by central indicators) to predominance of locally mediated control mechanism. The latter depended on the presence of increased metabolic activity. If hierarchy levels are defined functionally (rather than structurally) on the basis of the magnitude of the response of the different indicators our results show a complete reversal of the hierarchical ordering between stimulation of the proximal and peripheral end of the sciatic and femoral nerve. An appropriate choice of sufficient and adequate parameters for the characterization of integrated response pattern is a crucial prerequisite for this type of analysis.Supported by Program Project Grant HL 11747 from NHLI.  相似文献   

13.
14.
15.
The consequences of a decreased O2 supply to a contracting canine gastrocnemius muscle preparation were investigated during two forms of hypoxia: hypoxic hypoxia (HH) (n = 6) and CO hypoxia (COH) (n = 6). Muscle O2 uptake, blood flow, O2 extraction, and developed tension were measured at rest and at 1 twitch/s isometric contractions in normoxia and in hypoxia. No differences were observed between the two groups at rest. During contractions and hypoxia, however, O2 uptake decreased from the normoxic level in the COH group but not in the HH group. Blood flow increased in both groups during hypoxia, but more so in the COH group. O2 extraction increased further with hypoxia (P less than 0.05) during concentrations in the HH group but actually fell (P less than 0.05) in the COH group. The O2 uptake limitation during COH and contractions was associated with a lesser O2 extraction. The leftward shift in the oxyhemoglobin dissociation curve during COH may have impeded tissue O2 extraction. Other factors, however, such as decreased myoglobin function or perfusion heterogeneity must have contributed to the inability to utilize the O2 reserve more fully.  相似文献   

16.
The regional distribution of O2 deficit in muscle and nonmuscle tissues was measured in hypermetabolic dogs ventilated with a low inspired O2 fraction and was compared with excess O2 used in these regions during normoxic recovery. O2 uptake was stimulated by 2,4-dinitrophenol (DNP). Arterial, mixed venous, and muscle venous blood samples were drawn before, during, and after severe hypoxia (9% O2-91% N2) for the calculation of hindlimb O2 uptake and cardiac output. The O2 deficit and excess O2 uptake in recovery were calculated as the cumulative differences between normoxic control and respective hypoxic and recovery O2 uptake values. The DNP data were compared with data previously obtained in our laboratory. A greater whole-body O2 deficit was incurred in the DNP group during hypoxia and was associated with a larger O2 use in recovery. The total O2 deficit was equally distributed between muscle and nonmuscle tissues, but more excess O2 use occurred in nonmuscle tissues. The greater excess O2 used by nonmuscle tissues may have been associated with the restoration of intracellular ion concentrations brought about by the increased activity of energy-using membrane pumps.  相似文献   

17.
18.
19.
With the aim of simplifying recombinant-adeno-associated virus (rAAV) delivery in muscle, a new femoral intra-arterial technique was designed and tested in rodents (rats and mice). Two serotypes, several promoters and transgenes (reporter or therapeutic) were tested using this administration route. The new route is both easy to perform and efficient. Its usefulness as a tool to assess gene delivery constructs in the muscle was established in the context of recombinant AAV serotypes 1 and 2, and with the ubiquitous CMV and two muscle-specific (C5-12 and CK6) promoters. Both serum monitoring of a secreted protein (murine alkaline phosphatase: muSEAP) and slide staining were used to compare the different constructs. Significantly different patterns of expression in kinetics of expression (muSEAP) and homogeneity of fiber transduction (staining) were evidenced with the different promoters tested, and compared with intra-muscular expression patterns. Detailed studies of differential transduction in leg and thigh muscles showed equivalent efficacy, except in rectus femoris, and to a lesser extent in soleus. In light of these results and prior data, intra-arterially mediated gene transfer mechanism is discussed.  相似文献   

20.
Hepatic oxygen and lactate extraction during stagnant hypoxia   总被引:1,自引:0,他引:1  
As O2 delivery falls, tissues must extract increasing amounts of O2 from blood to maintain a normal O2 consumption. Below a critical delivery threshold, increases in O2 extraction cannot compensate for the falling delivery, and O2 uptake falls in a supply-dependent fashion. Numerous studies have identified a critical delivery in whole animals, but the regional contributions to the critical O2 delivery are less fully understood. In the present study, we explored the limits of O2 extraction in the isolated liver, seeking to determine 1) the normal relationship between O2 consumption and delivery in the liver and 2) the relationship of hepatic lactate extraction to the drop in hepatic O2 consumption at low O2 deliveries. To answer these questions, using support dogs as a source for oxygenated metabolically stable blood, we studied eight pump-perfused canine livers. By lowering the blood flow in a model of stagnant hypoxia, we explored the relationship between O2 consumption and delivery over the entire physiological range of O2 delivery. The critical O2 delivery was 28 +/- 5 (SD) ml.kg-1.min-1; the livers extracted 68 +/- 9% of the delivered O2 before reaching supply dependence. This suggests that the liver has an O2 extraction capacity quite similar to the body as a whole and not different from other tissues that have been isolated. At high blood flows, the livers extracted approximately 10% of the lactate delivered by the blood, but the arteriovenous lactate differences were small. At low blood flows, however, the livers changed from lactate consumption to production. The O2 delivery coinciding with the dropoff in lactate extraction did not differ significantly from the critical O2 delivery. We conclude that reductions in lactate uptake by the liver do not precede the transition to O2 supply dependence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号