首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The vanilloid receptor TRPV1 plays a well-established functional role in the detection of a range of chemical and thermal noxious stimuli, such as those associated with tissue inflammation and the resulting pain. TRPV1 activation results in membrane depolarization, but may also trigger intracellular Ca2+ -signalling events. In a proteomic screen for proteins associated with the C-terminal sequence of TRPV1, we identified beta-tubulin as a specific TRPV1-interacting protein. We demonstrate that the TRPV1 C-terminal tail is capable of binding tubulin dimers, as well as of binding polymerized microtubules. The interaction is Ca2+ -sensitive, and affects microtubule properties, such as microtubule sensitivity towards low temperatures and nocodazole. Our data thus provide compelling evidence for the interaction of TRPV1 with the cytoskeleton. The Ca2+ -sensitivity of this interaction suggests that the microtubule cytoskeleton at the cell membrane may be a downstream effector of TRPV1 activation.  相似文献   

2.
Erucylphosphocholine (ErPC) is a promising anti-neoplastic drug for the treatment of malignant brain tumours. It exerts strong anti-cancer activity in vivo and in vitro and induces apoptosis even in chemoresistant glioma cell lines. The purpose of this study was to expand on our previous observations on the potential mechanisms of ErPC-mediated apoptosis with a focus on death receptor activation and the caspase network. A172 and T98G glioma cells were treated with ErPC for up to 48 h. ErPC effects on the expression of the tumour necrosis factor (TNF) and TNF-related apoptosis-inducing ligand (TRAIL) receptor system, and on caspase activation were determined. ErPC had no effect on the expression of TNFalpha or TRAIL. Inhibition of the TNF or TRAIL signalling pathway with antagonistic antibodies or fusion proteins did not affect apoptosis induced by ErPC, and a dominant-negative FADD construct did not abolish ErPC-induced effects. Western blot analysis indicated that ErPC-triggered apoptosis resulted in a time-dependent processing of caspases-3, -7, -8 and -9 into their respective active subunits. Co-treatment of A172 cells with different caspase inhibitors prevented apoptosis but did not abrogate cell death. These data suggest that A172 cells might have an additional caspase-independent pathway that insures cell death and guarantees killing of those tumour cells whose caspase pathway is incomplete.  相似文献   

3.
Oleoylethanolamide (OEA) is an endogenous lipid mediator involved in the control of feeding, body weight, and energy metabolism. However, whether OEA modulates maturation of dendritic cells (DCs) has never been addressed. Hence, we evaluated the effect of OEA on DCs maturation in bone marrow-derived DCs (BMDCs) in four aspects: (a) Cell surface markers were determined using flow cytometric analysis; (b) cell mobile ability was testified with the transwell assay; (c) stimulation of T cells proliferation was performed in a coculture system; and (d) cytokine production was measured using polymerase chain reaction (PCR). The result showed that, in mature BMDCs induced by lipopolysaccharides (LPS), the OEA treatment decreased expressions of cell surface markers, reduced cell migration, diminished the proliferation of cocultured T cells, and regulated cytokine production of BMDCs, indicating the modulatory effect of OEA on DCs maturation. Furthermore, to explore the underlying mechanism of the immunomodulatory effect of OEA, we used antagonists of transient receptor potential vanilloid-1 (TRPV1) and AMP-activated protein kinase (AMPK), determined the protein expressions of TRPV1/AMPK and Toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) using western blot, and measured the intracellular calcium concentration using calcium imaging. The result illustrated that OEA downregulated TLR4/NF-κB, the classical pathway leading to DCs maturation induced by LPS, through the activation of TRPV1 and AMPK. Collectively, the present study suggests that OEA suppresses DCs maturation through the activation of TRPV1/AMPK. These findings increase our understanding of this endogenous lipid OEA.  相似文献   

4.
The goal of the current study was to investigate the expression of transient receptor potential vanilloid-1 (TRPV1) on human in vitro differentiated monocyte-derived dendritic cells (DCs) and to dissect the corresponding role of TRPV1-signaling in DC-specific functions. TRPV1 expression was identified both at the protein and gene levels in human DCs. Moreover, the prototypic TRPV1 agonist capsaicin specifically (i.e. via TRPV1) and dose-dependently inhibited cytokine-induced DC differentiation, phagocytosis of bacteria, activation of DCs, and pro-inflammatory cytokine secretion. These data introduce TRPV1-coupled signaling as a novel player in human monocyte-derived DC biology with anti-inflammatory actions.  相似文献   

5.
Patients with malignant gliomas have a poor prognosis and new treatment paradigms are needed against this disease. TRAIL/Apo2L selectively induces apoptosis in malignant cells sparing normal cells and is hence of interest as a potential therapeutic agent against gliomas. To determine the factors that modulate sensitivity to TRAIL, we examined the differences in TRAIL-activated signaling pathways in glioma cells with variable sensitivities to the agent. Apoptosis in response to TRAIL was unrelated to DR5 expression or endogenous p53 status in a panel of 8 glioma cell lines. TRAIL activated the extrinsic (cleavage of caspase-8, caspase-3 and PARP) and mitochondrial apoptotic pathways and reduced FLIP levels. It also induced caspase-dependent JNK activation, which did not influence TRAIL-induced apoptosis. Because the pro-survival PI3K/Akt pathway is highly relevant to gliomas, we assessed whether Akt could protect against TRAIL-induced apoptosis. Pretreatment with SH-6, a novel Akt inhibitor, enhanced TRAIL-induced apoptosis, suggesting a protective role for Akt. Conversely, TRAIL induced caspase-dependent cleavage of Akt neutralizing its anti-apoptotic effects. These results demonstrate that TRAIL-induced apoptosis in gliomas involves both activation of death pathways and downregulation of survival pathways. Additional studies are warranted to determine the therapeutic potential of TRAIL against gliomas.Supported in part by the NIH grant PO1 CA55261  相似文献   

6.
7.
Free oxygen radicals are involved in the pathogenesis of necrotizing enterocolitis (NEC) in premature infants. The stress-activated p38 mitogen-activated protein kinase (MAPK) has been implicated in gut injury. Here, we found that phosphorylated p38 was detected primarily in the villus tips of normal intestine, whereas it was expressed in the entire mucosa in NEC. H(2)O(2) treatment resulted in a rapid phosphorylation of p38 MAPK and subsequent apoptosis of rat intestinal epithelial (RIE)-1 cells; this induction was attenuated by treatment with SB203580, a selective p38 MAPK inhibitor, or transfection with p38alpha siRNA. Moreover, SB203580 also blocked H(2)O(2)-induced PKC activation. In contrast, the PKC inhibitor (GF109203x) did not affect p38 activation, indicating that p38 MAPK activation occurs upstream of PKC activation in H(2)O(2)-induced apoptosis. H(2)O(2) treatment also decreased mitochondrial membrane potential; pretreatment with SB203580 attenuated this response. Our study demonstrates that the p38 MAPK/PKC pathway plays an important role as a pro-apoptotic cellular signaling during oxidative stress-induced intestinal epithelial cell injury.  相似文献   

8.
Vascular smooth muscle cells (VSMCs) are an important origin of foam cells besides macrophages. The mechanisms underlying VSMC foam cell formation are relatively little known. Activation of transient receptor potential vanilloid subfamily 1 (TRPV1) and autophagy have a potential role in regulating foam cell formation. Our study demonstrated that autophagy protected against foam cell formation in oxidized low-density lipoprotein (oxLDL)-treated VSMCs; activation of TRPV1 by capsaicin rescued the autophagy impaired by oxLDL and activated autophagy–lysosome pathway in VSMCs; activation of TRPV1 by capsaicin impeded foam cell formation of VSMCs through autophagy induction; activation of TRPV1 by capsaicin induced autophagy through AMP-activated protein kinase (AMPK) signaling pathway. This study provides evidence that autophagy plays an important role in VSMC foam cell formation and highlights TRPV1 as a promising therapeutic target in atherosclerosis.  相似文献   

9.
The transmission of pain signalling involves the cytoskeleton, but mechanistically this is poorly understood. We recently demonstrated that the capsaicin receptor TRPV1, a non-selective cation channel expressed by nociceptors that is capable of detecting multiple pain-producing stimuli, directly interacts with the tubulin cytoskeleton. We hypothesized that the tubulin cytoskeleton is a downstream effector of TRPV1 activation. Here we show that activation of TRPV1 results in the rapid disassembly of microtubules, but not of the actin or neurofilament cytoskeletons. TRPV1 activation mainly affects dynamic microtubules that contain tyrosinated tubulins, whereas stable microtubules are apparently unaffected. The C-terminal fragment of TRPV1 exerts a stabilizing effect on microtubules when over-expressed in F11 cells. These findings suggest that TRPV1 activation may contribute to cytoskeleton remodelling and so influence nociception.  相似文献   

10.
ABSTRACT

This study aims to study the effects of adenosine A2A receptor (A2AR) on hippocampal cell apoptosis and the putative mechanisms in a mouse model of chronic hypoxic-hypercapnia. Wild-type (WT) or A2AR knockout (A2AR KO) mice were randomly divided into normal control (NC) groups and chronic hypoxic-hypercapnia (4HH) groups. Compared with their corresponding NC groups (WT-NC and KO-NC), the apoptosis index (AI), caspase-3 activity, Bax mRNA and P-p38 protein expression in the hippocampus of 4HH groups (WT-4HH and KO-4HH) were significantly increased, while Bcl2 mRNA expression was significantly decreased (P < 0.05). Moreover, A2AR deficiency significantly rescued the effect of chronic hypoxic-hypercapnia on apoptosis when compared with the WT-4HH group (P < 0.05). A2AR deficiency inhibits hippocampal cell apoptosis in mice exposed to chronic hypoxic-hypercapnia, which might be associated with dampened p38 MAPK activation and Bax mRNA expression, and augmented Bcl-2 mRNA expression.  相似文献   

11.
The E3 ubiquitin ligase MYCBP2 negatively regulates neuronal growth, synaptogenesis, and synaptic strength. More recently it was shown that MYCBP2 is also involved in receptor and ion channel internalization. We found that mice with a MYCBP2-deficiency in peripheral sensory neurons show prolonged thermal hyperalgesia. Loss of MYCBP2 constitutively activated p38 MAPK and increased expression of several proteins involved in receptor trafficking. Surprisingly, loss of MYCBP2 inhibited internalization of transient receptor potential vanilloid receptor 1 (TRPV1) and prevented desensitization of capsaicin-induced calcium increases. Lack of desensitization, TRPV internalization and prolonged hyperalgesia were reversed by inhibition of p38 MAPK. The effects were TRPV-specific, since neither mustard oil-induced desensitization nor behavioral responses to mechanical stimuli were affected. In summary, we show here for the first time that p38 MAPK activation can inhibit activity-induced ion channel internalization and that MYCBP2 regulates internalization of TRPV1 in peripheral sensory neurons as well as duration of thermal hyperalgesia through p38 MAPK.  相似文献   

12.
13.
Interleukin (IL)-1 expression is induced rapidly in response to diverse CNS insults and is a key mediator of experimentally induced neuronal injury. However, the mechanisms of IL-1-induced neurotoxicity are unknown. The aim of the present study was to examine the toxic effects of IL-1 on rat cortical cell cultures. Treatment with IL-1beta did not affect the viability of pure cortical neurones. However, IL-1 treatment of cocultures of neurones with glia or purified astrocytes induced caspase activation resulting in neuronal death. Neuronal cell death induced by IL-1 was prevented by pre-treatment with the IL-1 receptor antagonist, the broad spectrum caspase inhibitor Boc-Asp-(OMe)-CH(2)F or the antioxidant alpha-tocopherol. The NMDA receptor antagonist dizolcipine (MK-801) attenuated cell death induced by low doses of IL-1beta but the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline (NBQX) had no effect. Inhibition of inducible nitric oxide synthase with N(omega)-nitro-l-arginine methyl ester had no effect on neuronal cell death induced by IL-1beta. Thus, IL-1 activates the IL-1 type 1 receptor in astrocytes to induce caspase-dependent neuronal death, which is dependent on the release of free radicals and may contribute to neuronal cell death in CNS diseases.  相似文献   

14.
The administration of such a transient receptor potential vanilloid 1 (TRPV1) agonist as capsaicin, which is a pungent ingredient of red pepper, promotes energy metabolism and suppresses visceral fat accumulation. We have recently identified monoacylglycerols (MGs) having an unsaturated long-chain fatty acid as the novel TRPV1 agonist in foods. We investigated in this present study the effects of dietary MGs on uncoupling protein 1 (UCP1) expression in interscapular brown adipose tissue (IBAT) and on fat accumulation in mice fed with a high-fat, high-sucrose diet. The MG30 diet that substituted 30% of all lipids for MGs (a mixture of 1-oleoylglycerol, 1-linoleoylglycerol and 1-linolenoylglycerol) significantly increased the UCP1 content of IBAT and decreased the weight of epididymal white adipose tissue, and the serum glucose, total cholesterol and free fatty acid levels. The diet containing only 1-oleoylglycerol as MG also increased UCP1 expression in IBAT. MGs that activated TRPV1 also therefore induced the expression of UCP 1 and prevented visceral fat accumulation as well as capsaicin.  相似文献   

15.
Transient receptor potential channel type V (TRPV) 1 is a non-selective cation channel that can be activated by capsaicin, endogenous vanilloids, heat and protons. The human TRPV1 splice variant, TRPV1b, lacking exon 7, was cloned from human dorsal root ganglia (DRG) RNA. The expression profile and relative abundance of TRPV1b and TRPV1 in 35 different human tissues were determined by quantitative RT-PCR using isoform-specific probes. TRPV1b was most abundant in fetal brain, adult cerebellum and DRG. Functional studies using electrophysiological techniques showed that recombinant TRPV1b was not activated by capsaicin (1 microM), protons (pH 5.0) or heat (50 degrees C). However, recombinant TRPV1b did form multimeric complexes and was detected on the plasma membrane of cells, demonstrating that the lack of channel function was not due to defects in complex formation or cell surface expression. These results demonstrate that exon 7, which encodes the third ankyrin domain and 44 amino acids thereafter, is required for normal channel function of human TRPV1. Moreover, when co-expressed with TRPV1, TRPV1b formed complexes with TRPV1, and inhibited TRPV1 channel function in response to capsaicin, acidic pH, heat and endogenous vanilloids, dose-dependently. Taken together, these data support the hypothesis that TRPV1b is a naturally existing inhibitory modulator of TRPV1.  相似文献   

16.
17.
p~(38)MAPK在IL-18诱导肾小管上皮细胞转分化中的作用   总被引:1,自引:0,他引:1  
目的:白细胞介素18(IL-18)可诱导肾小管上皮细胞转分化,本研究探讨其是否是通过p38MAPK途径而起作用。方法:应用不同浓度的p38MAPK通路特异性阻断剂SB203580(0、5、10、20μmol/L)预孵育人近端肾小管上皮细胞(HK-2细胞)30min后,加入IL-18(100ng/ml)共培养24、48、72h。应用RT-PCR法检测α-平滑肌肌动蛋白(α-SMA)mRNA的表达水平;应用ELISA法测定细胞浆中α-SMA蛋白质含量。结果:SB203580呈剂量依赖性地抑制IL-18诱导的HK-2细胞α-SMA基因表达(P0.05)。结论:p38MAPK通路是调控IL-18诱导肾小管上皮细胞转分化的主要信号通路之一。  相似文献   

18.
Erucylphosphocholine (ErPC) exerts strong anticancer activity in vivo and in vitroand induces apoptosis even in chemoresistant glioma cell lines. We investigated the contribution of Apaf-1 and caspase-3 to the apoptotic response to ErPC using RNA interference (RNAi) in human glioblastoma cells. We could demonstrate that human glioma cell lines are susceptible to RNAi. Apaf-1 and caspase-3 are amenable to specific small interfering RNA (siRNA)-induced degradation resulting in a reduction of protein levels to 8–33% (Apaf-1) and to 30–50% (caspase-3). Transfection of siRNA directed to Apaf-1 and caspase-3 specifically reduced caspase-3 processing induced by ErPC treatment and yielded a reduction in cells that undergo ErPC-induced apoptosis to 17–33% (Apaf-1) and to 38–50% (caspase-3). The caspase-3 siRNA experiments were corroborated in caspase-3-deficient and -reconstituted MCF-7 breast cancer cells. Survival assays and morphological observations revealed that caspase-3 reconstitution significantly sensitized MCF-7 cells to ErPC. Exploring the caspase cascade responsible for ErPC-induced apoptosis MCF-7 cells provided evidence that caspase-3 is required for the activation of caspases-2, -6 and -8 and also participates in a feedback amplification loop. Our results provide evidence that Apaf-1 and caspase-3 are major determinants of ErPC-induced apoptosis and the possible use of ErPC in a clinical setting is discussed.  相似文献   

19.
20.
In most cases, macroautophagy/autophagy serves to alleviate cellular stress and acts in a pro-survival manner. However, the effects of autophagy are highly contextual, and autophagic cell death (ACD) is emerging as an alternative paradigm of (stress- and drug-induced) cell demise. AT 101 ([-]-gossypol), a natural compound from cotton seeds, induces ACD in glioma cells as confirmed here by CRISPR/Cas9 knockout of ATG5 that partially, but significantly rescued cell survival following AT 101 treatment. Global proteomic analysis of AT 101-treated U87MG and U343 glioma cells revealed a robust decrease in mitochondrial protein clusters, whereas HMOX1 (heme oxygenase 1) was strongly upregulated. AT 101 rapidly triggered mitochondrial membrane depolarization, engulfment of mitochondria within autophagosomes and a significant reduction of mitochondrial mass and proteins that did not depend on the presence of BAX and BAK1. Conversely, AT 101-induced reduction of mitochondrial mass could be reversed by inhibiting autophagy with wortmannin, bafilomycin A1 and chloroquine. Silencing of HMOX1 and the mitophagy receptors BNIP3 (BCL2 interacting protein 3) and BNIP3L (BCL2 interacting protein 3 like) significantly attenuated AT 101-dependent mitophagy and cell death. Collectively, these data suggest that early mitochondrial dysfunction and HMOX1 overactivation synergize to trigger lethal mitophagy, which contributes to the cell killing effects of AT 101 in glioma cells.

Abbreviations: ACD, autophagic cell death; ACN, acetonitrile; AT 101, (-)-gossypol; BAF, bafilomycin A1; BAK1, BCL2-antagonist/killer 1; BAX, BCL2-associated X protein; BH3, BCL2 homology region 3; BNIP3, BCL2 interacting protein 3; BNIP3L, BCL2 interacting protein 3 like; BP, Biological Process; CCCP, carbonyl cyanide m-chlorophenyl hydrazone; CC, Cellular Component; Con, control; CQ, chloroquine; CRISPR, clustered regularly interspaced short palindromic repeats; DMEM, Dulbecco’s Modified Eagle Medium; DTT, 1,4-dithiothreitol; EM, electron microscopy; ER, endoplasmatic reticulum; FACS, fluorescence-activated cell sorting; FBS, fetal bovine serum; FCCP, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone; GO, Gene Ontology; HAcO, acetic acid; HMOX1, heme oxygenase 1; DKO, double knockout; LC-MS/MS, liquid chromatography coupled to tandem mass spectrometry; LPL, lipoprotein lipase, MEFs, mouse embryonic fibroblasts; mPTP, mitochondrial permeability transition pore; MTG, MitoTracker Green FM; mt-mKeima, mito-mKeima; MT-ND1, mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 1; PBS, phosphate-buffered saline; PE, phosphatidylethanolamine; PI, propidium iodide; PRKN, parkin RBR E3 ubiquitin protein ligase; SDS, sodium dodecyl sulfate; SQSTM1/p62, sequestome 1; STS, staurosporine; sgRNA, single guide RNA; SILAC, stable isotope labeling with amino acids in cell culture; TFA, trifluoroacetic acid, TMRM, tetramethylrhodamine methyl ester perchlorate; WM, wortmannin; WT, wild-type  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号