首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ganoderma sp. is an airborne fungal spore type known to trigger respiratory allergy symptoms in sensitive patients. Aiming to reduce the risk for allergic individuals, we analysed fungal spore circulation in Szczecin, Poland, and its dependence on meteorological conditions. Statistical models for the airborne spore concentrations of Ganoderma sp.—one of the most abundant fungal taxa in the area—were developed. Aerobiological sampling was conducted over 2004–2008 using a volumetric Lanzoni trap. Simultaneously, the following meteorological parameters were recorded: daily level of precipitation, maximum and average wind speed, relative humidity and maximum, minimum, average and dew point temperatures. These data were used as the explaining variables. Due to the non-linearity and non-normality of the data set, the applied modelling techniques were artificial neural networks (ANN) and mutlivariate regression trees (MRT). The obtained classification and MRT models predicted threshold conditions above which Ganoderma sp. appeared in the air. It turned out that dew point temperature was the main factor influencing the presence or absence of Ganoderma sp. spores. Further analysis of spore seasons revealed that the airborne fungal spore concentration depended only slightly on meteorological factors.  相似文献   

2.
A study was made of the link between time of day, weather variables and the hourly content of certain fungal spores in the atmosphere of the city of Szczecin, Poland, in 2004–2007. Sampling was carried out with a Lanzoni 7-day-recording spore trap. The spores analysed belonged to the taxa Alternaria and Cladosporium. These spores were selected both for their allergenic capacity and for their high level presence in the atmosphere, particularly during summer. Spearman correlation coefficients between spore concentrations, meteorological parameters and time of day showed different indices depending on the taxon being analysed. Relative humidity (RH), air temperature, air pressure and clouds most strongly and significantly influenced the concentration of Alternaria spores. Cladosporium spores correlated less strongly and significantly than Alternaria. Multivariate regression tree analysis revealed that, at air pressures lower than 1,011 hPa the concentration of Alternaria spores was low. Under higher air pressure spore concentrations were higher, particularly when RH was lower than 36.5%. In the case of Cladosporium, under higher air pressure (>1,008 hPa), the spores analysed were more abundant, particularly after 0330 hours. In artificial neural networks, RH, air pressure and air temperature were the most important variables in the model for Alternaria spore concentration. For Cladosporium, clouds, time of day, air pressure, wind speed and dew point temperature were highly significant factors influencing spore concentration. The maximum abundance of Cladosporium spores in air fell between 1200 and 1700 hours.  相似文献   

3.
The investigation into airborne fungal spore concentrations was conducted in Szczecin (Poland) between 2004 and 2009. The objective of the studies was to determine a seasonal variation in concentrations of amerospores on the basis of meteorological parameters. The presence of spores in Szczecin was recorded using a volumetric method. Fungal spores were present in the air in high numbers in late summer and early autumn. The highest concentrations were noted in September, October and November. The peak period was recorded in August, September, October and November. The highest annual number of spores occurred in 2005 and 2007 and the lowest in 2006. High values of daily concentration of amerospores occurred during the afternoon and late at night. In 2005 and 2007 the late-night maximum was overdue about 1 or 2 h. For daily values of dew point temperature and relative humidity, the coefficients were positive, significant for p = 0.001 and ranged from 0.342 to 0.258. The average wind speed was positively correlated for p = 0.01 and the coefficient was 0.291. The similar relations were noted for hourly values of spore concentrations for p = 0.05, p = 0.01 and p = 0.001. For these spore types, the dew point temperature and relative humidity appeared to be the most influential factor.  相似文献   

4.
Fungal spores are known to cause allergic sensitization. Recent studies reported a strong association between asthma symptoms and thunderstorms that could be explained by an increase in airborne fungal spore concentrations. Just before and during thunderstorms the values of meteorological parameters rapidly change. Therefore, the goal of this study was to create a predictive model for hourly concentrations of atmospheric Alternaria and Cladosporium spores on days with summer storms in Szczecin (Poland) based on meteorological conditions. For this study we have chosen all days of June, July and August (2004–2009) with convective thunderstorms. There were statistically significant relationships between spore concentration and meteorological parameters: positive for air temperature and ozone content while negative for relative humidity. In general, before a thunderstorm, air temperature and ozone concentration increased, which was accompanied by a considerable increase in spore concentration. During and after a storm, relative humidity increased while both air temperature ozone concentration along with spore concentrations decreased. Artificial neural networks (ANN) were used to assess forecasting possibilities. Good performance of ANN models in this study suggest that it is possible to predict spore concentrations from meteorological variables 2 h in advance and, thus, warn people with spore-related asthma symptoms about the increasing abundance of airborne fungi on days with storms.  相似文献   

5.
Air sampling was conducted in Waterloo, Canada throughout 1992. Functional relationships between aeromycota and meteorological factors were analysed. The meteorological factors were, in descending order of importance: mean temperature, minimum temperature, maximum temperature, mean wind speed, relative humidity (RH), rain, maximum wind speed and snow. The most important airborne fungal propagules in descending order were: total fungal spores, unidentified Ascomycetes,Cladosporium, Coprinus, unidentified Basidiomycetes,Alternaria and unidentified fungi. Most airborne fungal taxa had highly significant relationship with temperature, butAspergillus/Penicillium, hyphal fragments andEpicoccum did not.Epicoccum and hyphal fragments were positively associated with wind speed. In comparison with other airborne fungal taxa,Leptosphaeria and unidentified Ascomycetes were more closely correlated with rain and RH during the growing season.  相似文献   

6.
Alternaria and Cladosporium spores belong to the most frequent and allergenic particles in bioaerosol in the temperate climate. The investigation of Alternaria and Cladosporium spore concentrations was performed in two cities in Poland, Szczecin and Cracow, in 2004–2013. The meteorological parameters taken to assess their impact on fungal spores were average, maximum and minimum temperature, relative humidity and average wind velocity. In order to reveal whether changes in dynamics of spore seasons are driven by meteorological conditions, ordination methods were applied. Canonical correspondence analysis was used to explore redundancy among the predictors (meteorological parameters). Prior to ordination analyses, the data were log(x)-transformed. Concentrations of Alternaria and Cladosporium spores were significantly higher in Szczecin comparing to Cracow, but it was also observed the decreasing trend in the spore concentrations in Szczecin. As regards temperature, it was higher in Cracow and was still increasing in the studied years. Relative humidity and wind velocity were significantly lower in Cracow. In Szczecin meteorological conditions did not explain changes in spore season characteristics (insignificant redundancy analysis models), while in Cracow’s redundancy analysis models indicated that spore season parameters were in over 40 % determined by meteorological conditions, mainly air temperature and wind velocity. If they increase, the peak value, total number of spores and their average concentrations in a season will also increase.  相似文献   

7.
Annual variations in the abundance ofAlternaria spores were related to the length of the spore period for data from Murcia (southeastern Spain). To understand the relationship between the number of spores and climatic factors,Alternaria spore counts for March 1993 to February 1994 were examined by means of correlation and regression analyses with fourteen different weather parameters. The results indicated that there was a tendency forAlternaria spore concentrations to increase with increases in temperature, wind speed and hours of sunshine. Negative correlations were observed with air pressure, wind direction and humidity. Theoretical curves forAlternaria spore counts are given in relation to temperatures during the period studied.  相似文献   

8.
Because fungal spore emission intensity varies throughout the year and even throughout the day, study of the hourly distribution is an important aspect of aerobiological monitoring. The objective of this work was to determine seasonal and intradiurnal variation of allergenic airborne fungal spores in urban and rural areas. The aerobiological study was performed from 2005 to 2007 using Hirst-type volumetric spore traps. Fungal spore types (Cladosporium, Alternaria, and Aspergillus/Penicillium) were selected according to their allergenic capacity and their frequency in the atmosphere. Cladosporium was the most frequent fungal spore in both locations, together with Alternaria; its concentration was higher during summer whereas Aspergillus/Penicillium was more abundant during autumn. Alternaria and Cladosporium maximum daily spore concentration was reached from 16.00 to 20.00 h. Aspergillus/Penicillium spore distribution differed in the two locations, and although it was difficult to establish a distribution pattern the highest concentration were found during the night. Determination of periods of high concentration may help allergic patients to avoid the daily periods when the allergen concentration is highest.  相似文献   

9.
Aerobiological monitoring enables the definition of seasonal fungal spore concentrations and also intradiurnal time when the highest concentrations of spores could cause or increase allergy symptoms. These data are useful to estimate symptoms of disease, duration of infection and how advanced the illness is in people suffering from fungal allergens. The aim of the study was to compare the concentrations of fungal spores (Alternaria, Botrytis, Cladosporium, Didymella, Ganoderma) during dry and rainy periods and to analyse their intradiurnal changes. Average daily spore concentrations in dry and rainy periods were compared, using z test, separately for each taxon, season and for a combined 3-year period. Intradiurnal periodicity of fungal spore concentrations was analysed on the basis of three complementary diagrams. These spore concentrations were presented using three curves for all, dry and rainy days in 1997–1999 (April–November). The spore percentage in particular hours was normalized in relation to the daily spore sum accepted as 100%. Two further diagrams enabled the more precise analysis of the highest concentrations in dry days. Daily Botrytis and Cladosporium spore concentrations did not show significant differences between dry and rainy periods. In the case of Didymella and Ganoderma spore concentrations, there were no significant differences between both weather types in the single years, although there was a significant difference when a 3-year period was considered. The differences between daily concentrations of Alternaria spores in dry and rainy periods occurred in 1997 and in a 3-year period. Intradiurnal periodicity of spore concentrations was different for ‘dry’ and ‘wet’ fungal spores. Dry spores are released from the spore-producing parts of the fungus under conditions of decreasing humidity and increasing airflow. Examples of dry spores are those from Alternaria, Cladosporium and Botrytis. Wet spores, such as those from many Ascomycetes (Didymella) and Basidiomycetes (Ganoderma), are released into the atmosphere by processes related to humidity conditions or rain. The highest concentrations of ‘dry’ spores were observed early in the afternoon, while highest values of ‘wet’ spore concentrations occurred in the predawn hours. Statistically non-significant differences between daily spore concentrations in dry and rainy periods of single seasons were found except for Alternaria. Statistically significant differences could occur when the studied period was longer than one season (Alternaria, Didymella, Ganoderma). The highest concentrations of Alternaria, Botrytis and Cladosporium spores were recorded at noon and early in the afternoon. Concentrations of Didymella and Ganoderma spores were highest in the predawn hours.  相似文献   

10.
 Fungal spore counts of Cladosporium, Alternaria, and Epicoccum were studied during 8 years in Denver, Colorado. Fungal spore counts were obtained daily during the pollinating season by a Rotorod sampler. Weather data were obtained from the National Climatic Data Center. Daily averages of temperature, relative humidity, daily precipitation, barometric pressure, and wind speed were studied. A time series analysis was performed on the data to mathematically model the spore counts in relation to weather parameters. Using SAS PROC ARIMA software, a regression analysis was performed, regressing the spore counts on the weather variables assuming an autoregressive moving average (ARMA) error structure. Cladosporium was found to be positively correlated (P<0.02) with average daily temperature, relative humidity, and negatively correlated with precipitation. Alternaria and Epicoccum did not show increased predictability with weather variables. A mathematical model was derived for Cladosporium spore counts using the annual seasonal cycle and significant weather variables. The model for Alternaria and Epicoccum incorporated the annual seasonal cycle. Fungal spore counts can be modeled by time series analysis and related to meteorological parameters controlling for seasonallity; this modeling can provide estimates of exposure to fungal aeroallergens. Received: 14 October 1996 / Revised: 17 February 1997 / Accepted: 28 February 1997  相似文献   

11.
Introduction Fungal spores constitute an important fraction of bioaerosols in the atmosphere. Objectives To analyse the content of Alternaria and Cladosporium spores in the atmosphere of Beja and the effect of meteorological conditions on their concentrations. Methodology The daily and hourly data of Alternaria and Cladosporium fungal spores concentration in the atmosphere of Beja were monitored from April 12, 2012 to July 30, 2014, based on the Portuguese Aerobiology Network methodology. The influence of meteorological conditions on the studied types of fungal spore concentrations was assessed through Spearman’s correlation analysis. Results During the study period, 20,741 Alternaria spores and 320,862 Cladosporium spores were counted. In 2013, there were 5,822 Alternaria spores and 123,864 Cladosporium spores. The absolute maximum concentrations of Alternaria and Cladosporium spores were recorded on November 8, 2013, with 211 and 1301 spores/m3, respectively. Temperature, insolation and wind direction parameters showed a positive correlation with Alternaria and Cladosporium spore levels, while relative humidity and precipitation presented a negative correlation, which is statistically significant. Wind speed only showed a statistically significant positive correlation in terms of Alternaria spore levels. Conclusion Alternaria and Cladosporium spores are present in the atmospheric air of Beja throughout the year, with the highest concentration period occurring during spring and autumn. There was a clear effect of meteorological parameters on airborne concentrations of these fungal spores.  相似文献   

12.
A study of airborne fungal spore was carried out at nine locations in the southern part of the state of Enugu, Nigeria, from March 2005 to February 2006. The aim of the study was to ascertain the variations in selected fungal spore types at the sites owing to weather conditions. The variation in airborne fungal spores of 14 taxa was studied using modified Tauber pollen traps including Alternaria, Corynespora, Curvularia, Drechslera type, Endophragmiella, Botryodiplodia, Ganoderma, Gliomastrix, Nigrospora, Pithomyces, Spegazzinia, Sporidesmium, Tetraploa and Ustilago. The frequency of the spore types recorded showed considerable variation. The highest spore counts were recorded in July, June and October. The highest numbers of fungal spores were recorded during the rainy season (June–October) to early dry season (November–December). The peak of occurrence of most selected fungal spore types was July. The highest percentages of fungal spores were documented at the recording stations Mgbowo Junction, UNTH Ituku Ozalla and Oji River Express Junction. Spearman’s correlation analyses were performed for the monthly amounts of the fungal spore types and monthly meteorological factors. The numbers of Curvularia, Nigrospora and Sporidesmium was significantly correlated with relative humidity, while those of Endophragmiella, Pithomyces and Nigrospora were significantly correlated with temperature. A significant correlation was also found between the number of Nigrospora spores and light intensity and Sporidesmium spores and wind velocity. Relative humidity and temperature seem to be the most important weather conditions affecting the frequency of the selected spore types in the atmosphere.  相似文献   

13.

Since Alternaria is an important aeroallergen in temperate areas of the world, this study was undertaken in order to provide the first results obtained about the seasonal regimen of Alternaria airborne spores in the atmosphere of Santiago de Chile (Chile), for a period of 10 years (2005–2015), which has led to the construction of the first calendar for the city. Furthermore, the periods of maximum presence of these particles in the air were determined together with those days in which the threshold levels set up for the development of clinical symptoms were reached and/or surpassed. The annual spore integral varied between 4077 spores/m3 registered in 2013–2014 and 6824 spores/m3 in 2010–2011, with a main spore season from mid-winter (mid-July/mid-August) to the end of the autumn (June). Daily peaks were mainly detected in spring or autumn seasons but even in winter, although without surpassing 65 spores/m3 in any case.

  相似文献   

14.
Present investigation was undertaken to study the dynamics of relationships between atmospheric fungal spores and meteorological factors in western Romania. The airborne spore sampling was carried out by employing volumetric sampling. A total of nine meteorological parameters were selected for this investigation. During 2008–2010, it was found the same pattern of behaviour in the atmosphere for selected spore types (Alternaria, Cladosporium, Pithomyces, Epicoccum and Torula). The spores occurred in the air throughout the whole year, but maximum concentrations were reached in summer. Cladosporium and Alternaria peak levels were observed in June. Epicoccum peak value was found in September. The relationships between airborne spore concentrations and environmental factors were assessed using the analysis of Spearman’s rank correlations and multiple linear regressions. Spearman’s rank correlation analysis revealed that maximum, minimum and mean temperature, and number of sunshine hours were strongly (p < 0.01) and directly proportional to the concentration of all analysed fungal spores. Negative and significant correlations were with daily mean relative humidity. The variance explained percentage by regression analyses varied between 30.6 and 39.6 % for Alternaria and Cladosporium airborne spores. Statistical methods used in this study are complementary and confirmed stable dependence of Alternaria and Cladosporium spore concentrations on meteorological factors. The climate change parameters either increased temperatures, changed precipitation regimes or a combination of both affected allergenic fungal spore concentrations in western Romania. This study demonstrates the need for investigations throughout the year, from month to month, regarding the correct interpretation of airborne spore relationships with meteorological parameters.  相似文献   

15.
The aim of this work was to identify the main allergy-related Ascomycetes fungal spores present in the atmosphere of Porto, using different and complementary techniques. The atmospheric sampling, performed in the atmosphere of Porto (Portugal) from August 2006 to July 2008, indicated Cladosporium, Penicillium, Aspergillus and Alternaria as the main fungal spore taxa. Alternaria and Cladosporium peaks were registered during summer. Aspergillus and Penicillium highest values were registered from late winter to early spring. Additionally, the Andersen sampler allowed the culture and isolation of the collected viable spores subsequently used for different identification approaches. The internal-transcribed spacer region of the nuclear ribosomal repeat unit sequences of airborne Ascomycetes fungi isolates revealed 11 taxonomically related fungal species. Among the identified taxa, Penicillum and Aspergillus presented the highest diversity, while only one species of Cladosporium and Alternaria, respectively, were identified. All selected fungal spore taxa possessed phosphatase, esterase, leucine arylamidase and β-glucosidase enzymatic activity, while none had lipase, cystine arylamidase, trypsin or β-glucuronidase activity. The association between the spore cell wall morphology, DNA-based techniques and enzymatic activity approaches allowed a more reliable identification procedure of the airborne Ascomycota fungal spores.  相似文献   

16.
Very little is known in the UK about long term trends of theAlternaria spore although it is known to trigger asthma. It hasrecently become apparent that Alternaria spore levels areincreasing in Derby and a detailed study of Alternaria wasundertaken to investigate the increase in numbers, seasonal variationand diurnal periodicity. The seasonal (June—October)Alternaria spore concentrations show a distinct upward trendand there is evidence of an earlier seasonal start and an increase inthe seasonal duration. There has been a dramatic rise in the number ofdays with an Alternaria spore count above 50 spores per cubicmetre, with the peak daily count usually occurring in August butoccasionally in late July or early September. August generally has thehighest monthly total and for 1991–1998 there was a positivecorrelation with monthly rainfall and average temperature. Day to dayspore levels show a positive correlation between Alternariaspore concentrations and maximum temperature but a slight negativecorrelation with daily rainfall. The peak time for spore capture is14.00–22.00, and more than half the daily Alternariacatch is caught between 18.00 and 24.00 hours. The upward trend inAlternaria spore concentrations may be responsible forincreasing levels of respiratory disease, especially during harvesttime.  相似文献   

17.
In a previous work a 1-year time series of fungal spore concentrations was used to calibrate an artificial neural network for the estimation of Alternaria and Pleospora concentrations associated with observed meteorological variables in the atmosphere of L’Aquila, Italy. In this article the possibility to use the neural model calibrated with observed meteorological variables to predict the future fungal spore concentration from meteorological forecast is investigated. The results show that the proposed technique appears to be a suitable device to operationally predict the Alternaria and Pleospora concentrations a few days in advance. Emphasis is given to the actual use of these predictions for establishing a preventive strategy for allergy sufferers and for an appropriate use of fungicide treatments in agricultural activities, avoiding unsafe and useless pollution of the atmosphere, crops and fields.  相似文献   

18.
A study was made of the link between climatic factors and the daily content of certain fungal spores in the atmosphere of the city of Granada in 1994. Sampling was carried out with a Burkard 7-day-recording spore trap. The spores analysed corresponded to the taxa Alternaria, Ustilago and Cladosporium, with two morphologically different spore types in the latter genus, cladosporioides and herbarum. These spores were selected both for their allergenic capacity and for the high level of their presence in the atmosphere, particularly during the spring and autumn. The spores of Cladosporium were the most abundant (93.82% of the total spores identified). The Spearman correlation coefficients between the spore concentrations studied and the meteorological parameters show different indices depending on the taxon being analysed. Alternaria and Cladosporium are significantly correlated with temperature and hours of sunlight, while Ustilago shows positive correlation indices with relative humidity and negative indices with wind speed. Received: 16 April 1998 / Revised: 27 September 1999 / Accepted: 27 October 1999  相似文献   

19.
The objective of this study was to investigate the airborne viable spore concentrations and identify the fungal species in all indoor spaces from the lending library at the Technical University “Gheorghe Asachi” Iaşi, Romania. Samples were collected using the settle plate method and swab samples from PC cooler fan grids as well as from the wall in it’s vicinity and from paper/wood fragments. There were no air conditioning systems in the library rooms. The heating systems were standard with an environmental temperature of 20°C in winter, except for the storage area of old/rare books stacks II, where the temperature was below 15°C and the humidity was very high due to water infiltrations in the walls and poor maintenance. More than 296 fungal colonies from over 78 samples were identified, enumerated, and reported. Indoor airborne fungal spore deposition rates were within the range of 419–1,677 CFU/m2, with the predominance of genera being Aspergillus spp., Penicillium spp., Cladosporium spp., Alternaria spp. and Chaetomium spp. Approximately ten fungal colonies could not be identified. The PC fans move particles from the low levels (floor) to the air, and are thus responsible for maintaining a constant air velocity and contribute to fungal-spore aerosolization, transport, deposition and resuspension. Book paper and wood furniture are known to be suitable substrates for cellulose degrading fungi.  相似文献   

20.
Alternaria spores are found in the atmosphere in many locations around the world. They are significant from a human health perspective because they have been known to trigger allergic respiratory disease such as asthma and hay-fever. The presence of Alternaria spores in the atmosphere has been related to meteorological factors in past studies, but this has not been done previously in Sydney, Australia. This paper reports the results of such a study in Sydney. Alternaria spore concentration data for the period 19 August 1992 to 31 December 1995 were examined with meteorological data for the same period. The daily Alternaria spore concentration was compared to the meteorological data for the same day and for up to 3 days previously. The analysis methods were Spearmans rank correlation and multiple regression. Alternaria spores appear in the atmosphere of Sydney year-round, although they peak over spring, summer, and autumn. A number of meteorological factors, including mean, minimum, and maximum, temperature, dew point temperature, and air pressure, are significantly correlated with the atmospheric concentration of Alternaria spores. Some of these meteorological variables (temperature and dew point temperature) show significant correlations with a 1, 2, and 3 day lag, as well as for the same day. Regression models indicate that up to 31.1% of the variation in Alternaria spore concentration can be explained by meteorological factors. There is potential for the results of this study to be used by public health authorities in the prediction of Alternaria spore concentrations in Sydney.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号