首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Bacillus stearothermophilus ribosomal protein S15 (BS15) binds both a three-helix junction in the central domain of 16 S ribosomal RNA and its cognate mRNA. Native gel mobility-shift assays show that BS15 interacts specifically and with high affinity to the 5'-untranslated region (5'-UTR) of this cognate mRNA with an apparent dissociation constant of 3(+/-0.3) nM. In order to localize the structural elements that are essential for BS15 recognition, a series of deletion mutants of the full cognate mRNA were prepared and tested in the same gel-shift assay. The minimal binding site for BS15 is a 50 nucleotide RNA showing a close secondary structure resemblance to the BS15 binding region from 16 S rRNA. There are two major structural motifs that must be maintained for high-affinity binding. The first being a purine-rich three-helix junction, and the second being an internal loop. The sequence identity of the internal loops differs greatly between the BS15 mRNA and rRNA sites, and this difference is correlated to discrimination between wild-type BS15 and a BS15(H45R) mutant. The association and dissociation kinetics measured for the 5'-UTR-BS15 interaction are quite slow, but are typical for a ribosomal protein-RNA interaction. The BS15 mRNA and 16 S rRNA binding sites share a common secondary structure yet have little sequence identity. The mRNA and rRNA may in fact present similar if not identical structural elements that confer BS15 recognition.  相似文献   

3.
By cross-hybridization with a cDNA probe for the Xenopus laevis ribosomal protein L1 we have been able to isolate the homologous genes from a Saccharomyces cerevisiae genomic library. We have shown that these genes code for a ribosomal protein which was previously named L2. In yeast, like in X. laevis, these genes are present in two copies per haploid genome and, unlike the vertebrate counterpart, they do not contain introns. Amino acid comparison of the X. laevis L1 and S. cerevisiae L2 proteins has shown the presence of a highly conserved protein domain embedded in very divergent sequences. Although these sequences are very poorly homologous, they confer an overall secondary structure and folding highly conserved in the two species.  相似文献   

4.
A library of random mutations in Xenopus ribosomal protein L5 was generated by error-prone PCR and used to delineate the binding domain for 5S rRNA. All but one of the amino acid substitutions that affected binding affinity are clustered in the central region of the protein. Several of the mutations are conservative substitutions of non-polar amino acid residues that are unlikely to form energetically significant contacts to the RNA. Thermal denaturation, monitored by circular dichroism (CD), indicates that L5 is not fully structured and association with 5S rRNA increases the t(m) of the protein by 16 degrees C. L5 induces changes in the CD spectrum of 5S rRNA, establishing that the complex forms by a mutual induced fit mechanism. Deuterium exchange reveals that a considerable amount of L5 is unstructured in the absence of 5S rRNA. The fluorescence emission of W266 provides evidence for structural changes in the C-terminal region of L5 upon binding to 5S rRNA; whereas, protection experiments demonstrate that the N terminus remains highly sensitive to protease digestion in the complex. Analysis of the amino acid sequence of L5 by the program PONDR predicts that the N and C-terminal regions of L5 are intrinsically disordered, but that the central region, which contains three essential tyrosine residues and other residues important for binding to 5S rRNA, is likely to be structured. Initial interaction of the protein with 5S rRNA likely occurs through this region, followed by induced folding of the C-terminal region. The persistent disorder in the N-terminal domain is possibly exploited for interactions between the L5-5S rRNA complex and other proteins.  相似文献   

5.
Ribosomal protein L5 binds specifically to 5S rRNA to form a complex that is a precursor to 60S subunit assembly in vivo. Analyses in yeast cells, mammalian cells, and Xenopus embryos have shown that the accumulation of L5 is not coordinated with the expression of other ribosomal proteins. In this study, the primary structure and developmental expression of Xenopus ribosomal protein L5 were examined to determine the basis for its distinct regulation. These analyses showed that L5 expression could either coincide with 5S rRNA synthesis and ribosome assembly or be controlled independently of these events at different stages of Xenopus development. L5 synthesis during oogenesis was uncoupled from the accumulation of 5S rRNa but coincided with subunit assembly. In early embryos, the inefficient translation of L5 mRNA resulted in the accumulation of a stable L5-5S rRNA complex before ribosome assembly at later stages of development. Additional results demonstrated that L5 protein synthesized in vitro bound specifically to 5S rRNA.  相似文献   

6.
A functional ribosomal protein mRNA, encoding the 60 S subunit protein L1, has been synthesized in vitro using bacteriophage SP6 RNA polymerase. This mRNA directs the synthesis of a product indistinguishable from L1 protein purified from Xenopus ovarian ribosomes. Our results show that L1 synthesis in stage VI oocytes increases in response to microinjection of exogenous SP6-L1 mRNA, but excess L1 protein is not stably accumulated. These results indicate that dosage compensation does not occur at the translational level for this ribosomal protein mRNA and that the abundance of this protein in fully grown oocytes is subject to post-translational regulation.  相似文献   

7.
The topography of Escherichia coli 5S RNA has been examined in the presence of ribosomal proteins L5, L18 and L25 and their different combinations, by comparing the kethoxal modification characteristics of the various RNA-protein complexes with those of the free A-conformer of 5S RNA (Noller &; Garrett, 1979, accompanying paper).Two of the four most reactive guanines, G13 and G41, are unaffected by the protein, in accord with the finding that these are the only two guanines that are accessible in the 50S subunit (Noller &; Herr, 1974). The other two very reactive guanines, G24 and G69, are strongly protected by protein L18, either in the presence or absence of proteins L5 and L25. Protein binding studies with kethoxal-modified 5S RNA provide evidence that one or both of these two guanines are directly involved in the protein-RNA interactions, and this conclusion is supported by the occurrence of guanines in these two positions in all the other sequenced prokaryotic 5S RNAs.The group of less reactive guanines, G16, G23, G44, G86 and G107, are protected to some extent by each of the proteins L5, L18 and L25; the strongest effect is with L18. We suggest that this is attributable to a small increase in the conformational homogeneity of the 5S RNA and that L18, in particular, induces some tightening of the RNA structure.Only one guanine, G69, is rendered more accessible by the proteins. This effect is produced by protein L25, which is known to cause some destructuring of the 5S RNA (Bear et al., 1977). There was no other evidence for any destructuring of the 5S RNA. In particular, the sequence 72 to 83, which is complementary to a sequence in 23S RNA (Herr &; Noller, 1975), is not modified. However, in contrast to an earlier report (Erdmann et al., 1973), the conserved sequence G44-A-A-C, which has been implicated in tRNA binding, was not rendered more accessible by the proteins.  相似文献   

8.
9.
The proteins that bind to rat liver 5.8 S ribosomal ribonucleic acid were identified by affinity chromatography. The nucleic acid was oxidized with periodate and coupled by its 3'-terminus to Sepharose 4B through and adipic acid dihydrazide spacer. The ribosomal proteins that associate with the immobilized 5.8 S rRNA were identified by polyacrylamide gel electrophoresiss: they were L19, L8, and L6 from the 60 S subunit; and S13 and S9 from the small subparticle. Small amounts of L14, L17', L18, L27/L27', and L35', and of S11, S15, S23/S24, and S26 also were bound to the affinity column, but whether they associate directly and specifically with 5.8 S rRNA is not known. Escherichia coli ribosomal proteins did not bind to the rat liver 5.8 S rRNA affinity column.  相似文献   

10.
The upstream region of the Xenopus laevis L14 ribosomal protein gene was deleted starting from the 5' extremity in order to define the promoter length necessary to express a linked reporter CAT gene. The functional analysis indicated that a sequence located between -63 and -49 from the capsite is important for an efficient promoter activity. Band shift and ExoIII protection assays evidenced the binding to this region of a factor, called XrpFI, present in the crude nuclear extract from X.laevis oocytes. Methylation interference analysis localized the contacts in the G residues belonging to a short box, 5' CTTCC 3', positioned between -53 and -49 from the capsite. An additional factor, XrpFII, makes contacts with the sequence 5'GCCTGTTCGCC 3' located between -27 and -17 from the capsite. The deletion mutant still containing this sequence is poorly transcribed, but resumes activity when a short fragment containing the binding site for factor XrpFI is cloned in an upstream position.  相似文献   

11.
cDNA clones for Xenopus laevis ribosomal protein L32 have been isolated and sequenced. The deduced amino acid sequence indicates that L32 is a basic protein of 110 amino acids, has a molecular weight of 12,603 and is homologous to the rat ribosomal protein L35. Using the cDNA clone as a probe to follow the expression of this gene during Xenopus development, it has been shown that the pattern of accumulation of this mRNA follows the one previously described for other ribosomal protein mRNAs during oogenesis and embryogenesis. The analysis of the utilization of L32 mRNA during embryogenesis shows that this is controlled by the translational regulation typical of other ribosomal protein mRNAs.  相似文献   

12.
The two-domain ribosomal protein L1 has a dual function as a primary rRNA-binding ribosomal protein and as a translational repressor that binds its own mRNA. Here, we report the crystal structure of a complex between the isolated domain I of L1 from the bacterium Thermus thermophilus and a specific mRNA fragment from Methanoccocus vannielii. In parallel, we report kinetic characteristics measured for complexes formed by intact TthL1 and its domain I with the specific mRNA fragment. Although, there is a close similarity between the RNA-protein contact regions in both complexes, the association rate constant is higher in the case of the complex formed by the isolated domain I. This finding demonstrates that domain II hinders mRNA recognition by the intact TthL1.  相似文献   

13.
14.
We studied the pathway of 5S RNA during oogenesis in Xenopus laevis from its storage in the cytoplasm to accumulation in the nucleus, the sequence requirements for the 5S RNA to follow that pathway, and the 5S RNA-protein interactions that occur during the mobilization of stored 5S RNA for assembly into ribosomes. In situ hybridization to sections of oocytes indicates that 5S RNA first becomes associated with the amplified nucleoli during vitellogenesis when the nucleoli are activity synthesizing ribosomal RNA and assembling ribosomes. When labeled 5S RNA is microinjected into the cytoplasm of stage V oocytes, it migrates into the nucleus, whether microinjected naked or complexed with the protein TFIIIA as a 7S RNP storage particle. During vitellogenesis, a nonribosome bound pool of 5S RNA complexed with ribosomal protein L5 (5S RNPs) is formed, which is present throughout the remainder of oogenesis. Immunoprecipitation assays on homogenates of microinjected oocytes showed that labeled 5S RNA can become complexed either with L5 or with TFIIIA. Nucleotides 11 through 108 of the 5S RNA molecule provide the necessary sequence and conformational information required for the formation of immunologically detectable complexes with TFIIIA or L5 and for nuclear accumulation. Furthermore, labeled 5S RNA from microinjected 7S RNPs can subsequently become associated with L5. Such labeled 5S RNA is found in both 5S RNPs and 7S RNPs in the cytoplasm, but only in 5S RNPs in the nucleus of microinjected oocytes. These data suggest that during oogenesis a major pathway for incorporation of 5S RNA into nascent ribosomes involves the migration of 5S RNA from the nucleus to the cytoplasm for storage in an RNP complex with TFIIIA, exchange of that protein association for binding with ribosomal protein L5, and a return to the nucleus for incorporation into ribosomes as they are being assembled in the amplified nucleoli.  相似文献   

15.
16.
During Xenopus development, the synthesis of ribosomal proteins is regulated at the translational level. To identify the region of the ribosomal protein mRNAs responsible for their typical translational behavior, we constructed a fused gene in which the upstream sequences (promoter) and the 5' untranslated sequence (first exon) of the gene coding for Xenopus ribosomal protein S19 were joined to the coding portion of the procaryotic chloramphenicol acetyltransferase (CAT) gene deleted of its own 5' untranslated region. This fused gene was introduced in vivo by microinjection into Xenopus fertilized eggs, and its activity was monitored during embryogenesis. By analyzing the pattern of appearance of CAT activity and the distribution of the S19-CAT mRNA between polysomes and messenger ribonucleoproteins, it was concluded that the 35-nucleotide-long 5' untranslated region of the S19 mRNA is able to confer to the fused S19-CAT mRNA the translational behavior typical of ribosomal proteins during Xenopus embryo development.  相似文献   

17.
18.
DiNitto JP  Huber PW 《Biochemistry》2001,40(42):12645-12653
The formation of the Xenopus L5-5S rRNA complex depends on nonelectrostatic interactions. Fluorescence assays with 1-anilino-8-naphthalenesulfonate demonstrate that a hydrophobic region on L5 becomes exposed upon removal of bound 5S rRNA by treatment with ribonucleases. Several conserved aromatic amino acids, mostly tyrosines, were identified by comparative sequence analysis and changed individually to alanine. Substitution with alanine at any of three positions, Y86, Y99, or Y226, essentially abolishes RNA-binding activity, whereas those made at Y95 and Y207 have more modest effects. Replacement with phenylalanine at Y86 and Y226 does not change binding affinity, indicating that the aromatic ring of the side chain, not the hydroxyl group, is the critical functionality for binding. Alternatively, the phenolic hydroxyls at Y99 and Y207 do contribute to binding. The structural integrity of the mutant proteins was assessed using thermal denaturation and limited digestion with proteases. The T(m) of Y99A is 10 degrees C lower than that of the wild-type protein, and there are some differences in the protease digestion patterns that together indicate the structure of this mutant has been significantly perturbed. The structures of the other variants are not detectably different from the wild-type protein. These results provide evidence that intermolecular stacking interactions involving at least two tyrosine residues, Y86 and Y226, are necessary for formation of the L5-5S rRNA complex and can account, at least in part, for the contribution nonelectrostatic interactions make to the free energy of binding.  相似文献   

19.
D Becker-Ursic  J Davies 《Biochemistry》1976,15(11):2289-2296
From the high salt wash of the ribosomes of the yeast Saccharomyces cerevisiae, three protein kinases have been isolated and separated by DEAE-cellulose chromatography. The three kinases differ in their abilities to phosphorylate substrates such as histones (calf thymus), casein, and S. cerevisiae ribosomes; two of the kinases showed increased activity in the presence of cyclic adenosine 3',5'-monophosphate when histones and 40S ribosomal subunits were used as substrates. The protein kinases catalyzed phosphorylation of certain proteins of the 40S and 60S ribosomal subunits, and 80S ribosomes in vitro. Nine proteins of the 80S ribosome, seven proteins of the 40S subunit, and eleven of the 60S subunit were phosphorylated; different proteins were modified to various extents when different kinases were used. We have identified several proteins of 40S and 60S ribosomal subunits which are not available to the kinases in the 80S particles. Ribosomes isolated from S. cerevisiae cells growing in logarithmic phase of growth were found to contain a number of phosphorylated proteins. Studies by two-dimensional polyacrylamide gel electrophoresis indicated that the ribosomal proteins phosphorylated in vivo correspond with those phosphorylated in vitro. The relationship of in vivo phsophorylation of ribosomes to the growth and physiology of S. cerevisiae is not known.  相似文献   

20.
Eukaryotic mRNA capping enzymes are bifunctional, carrying both RNA triphosphatase (RTPase) and guanylyltransferase (GTase) activities. The Caenorhabditis elegans CEL-1 capping enzyme consists of an N-terminal region with RTPase activity and a C-terminal region that resembles known GTases, However, CEL-1 has not previously been shown to have GTase activity. Cloning of the cel-1 cDNA shows that the full-length protein has 623 amino acids, including an additional 38 residues at the C termini and 12 residues at the N termini not originally predicted from the genomic sequence. Full-length CEL-1 has RTPase and GTase activities, and the cDNA can functionally replace the capping enzyme genes in Saccharomyces cerevisiae. The CEL-1 RTPase domain is related by sequence to protein-tyrosine phosphatases; therefore, mutagenesis of residues predicted to be important for RTPase activity was carried out. CEL-1 uses a mechanism similar to protein-tyrosine phosphatases, except that there was not an absolute requirement for a conserved acidic residue that acts as a proton donor. CEL-1 shows a strong preference for RNA substrates of at least three nucleotides in length. RNA-mediated interference in C. elegans embryos shows that lack of CEL-1 causes development to arrest with a phenotype similar to that seen when RNA polymerase II elongation activity is disrupted. Therefore, capping is essential for gene expression in metazoans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号