首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
The gene for the mammalian DNA repair enzyme DNA polymerase beta (beta-pol) is constitutively expressed in most cells, but is regulated in a tissue-specific fashion and can be induced in response to some types of DNA damaging agents. The promoter for the human beta-pol gene has been characterized and found to be TATA-less, but it does have multiple GC boxes and one ATF/CRE-binding site located within 50 residues 5' of the major mRNA start site. The ATF/CRE-binding site has been found to be essential for activity of the cloned promoter. We report that a bovine testes DNA-binding protein with specificity for the beta-pol promoter ATF/CRE-binding site is phosphorylated in vivo and contains several phosphorylation sites. Sequence specific DNA-binding by the purified protein is reduced when the natural protein is dephosphorylated or when it is hyperphosphorylated by protein kinase A (cKA) in vitro. These results suggest the possibility that phosphorylation systems may change binding of this ATF/CRE-binding protein to the beta-pol promoter and in turn modulate the promoter. Possible correlation of the results with transient expression activity of the cloned beta-pol promoter fusion gene was obtained in 293 cells. Cotransfection with a cKA expression plasmid to elevate phosphorylation was found to strongly reduce promoter activity.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
Previously, mouse NIH 3T3 cells were stably transfected with human DNA polymerase beta (beta-pol) cDNA in the antisense orientation and under the control of a metallothionein promoter [Zmudzka, B.Z. and Wilson, S.H. (1990) Som. Cell Mol. Gen., 16, 311-320]. To assess the feasibility of enhancing the efficacy of chemotherapy by an antisense approach and to confirm a role for beta-pol in cellular DNA repair, we looked for increased sensitivity to DNA damaging agents under conditions where beta-pol is down-regulated in the antisense cell line. Such a sensitization is anticipated only where beta-pol is rate-limiting in a DNA repair pathway. A number of agents were tested: cis-diamminedichloroplatinum II (cisplatin); 1,3-bis(2-chloroethyl)-1- nitrosourea (BCNU); ionizing radiation and the radio-mimetic drug bleomycin; the bifunctional alkylating agents nitrogen mustard and L-phenylalanine mustard (melphalan); the monofunctional alkylating agent methyl methane sulfonate (MMS) and ultraviolet (UV) radiation. In the cases of cisplatin and UV radiation, a significant enhancement of cytotoxicity was observed. Damage as a result of both of these agents is thought to be repaired by the nucleotide excision repair (NER) pathway. The results suggest that, in this cell line, beta-pol is involved in and is rate-limiting in NER. We propose that down-regulation of beta-pol by antisense approaches might be used to enhance the cytotoxic effects of cisplatin and other DNA damaging chemotherapeutic agents.  相似文献   

14.
15.
We have isolated the 5' region of the ecto-5'-nucleotidase (low K(m) 5'-NT) gene and established that a 969-base pair (bp) fragment confers cell-specific expression of a CAT reporter gene that correlates with the expression of endogenous ecto-5'-NT mRNA and enzymatic activity. A 768-bp upstream negative regulatory region has been identified that conferred lymphocyte-specific negative regulation in a heterologous system with a 244-bp deoxycytidine kinase core promoter. DNase I footprinting identified several protected areas including Sp1, Sp1/AP-2, and cAMP response element (CRE) binding sites within the 201-bp core promoter region and Sp1, NRE-2a, TCF-1/LEF-1, and Sp1/NF-AT binding sites in the upstream regulatory region. Whereas the CRE site was essential in mediating the negative activity of the upstream regulatory region in Jurkat but not in HeLa cells, mutation of the Sp1/AP-2 site decreased promoter activity in both cell lines. Electrophoretic mobility shift assay analysis of proteins binding to the CRE site identified both ATF-1 and ATF-2 in Jurkat cells. Finally, phorbol 12-myristate 13-acetate increased the activity of both the core and the 969-bp promoter fragments, and this increase was abrogated by mutations at the CRE site. In summary, we have identified a tissue-specific regulatory region 5' of the ecto-5'-NT core promoter that requires the presence of a functional CRE site within the basal promoter for its suppressive activity.  相似文献   

16.
17.
18.
19.
20.
Monofunctional alkylating agents react with DNA by S(N)1 or S(N)2 mechanisms resulting in formation of a wide spectrum of cytotoxic base adducts. DNA polymerase beta (beta-pol) is required for efficient base excision repair of N-alkyl adducts, and we make use of the hypersensitivity of beta-pol null mouse fibroblasts to investigate such alkylating agents with a view towards understanding the DNA lesions responsible for the cellular phenotype. The inability of O(6)-benzylguanine to sensitize wild-type or beta-pol null cells to S(N)1-type methylating agents indicates that the observed hypersensitivity is not due to differential repair of cytotoxic O-alkyl adducts. Using a 3-methyladenine-specific agent and an inhibitor of such methylation, we find that inefficient repair of 3-methyladenine is not the reason for the hypersensitivity of beta-pol null cells to methylating agents, and further that 3-methyladenine is not the adduct primarily responsible for methyl methanesulfonate (MMS)- and methyl nitrosourea-induced cytotoxicity in wild-type cells. Relating the expected spectrum of DNA adducts and the relative sensitivity of cells to monofunctional alkylating agents, we propose that the hypersensitivity of beta-pol null cells reflects accumulation of cytotoxic repair intermediates, such as the 5'-deoxyribose phosphate group, following removal of 7-alkylguanine from DNA. In support of this conclusion, beta-pol null cells are also hypersensitive to the thymidine analog 5-hydroxymethyl-2'-deoxyuridine (hmdUrd). This agent is incorporated into cellular DNA and elicits cytotoxicity only when removed by glycosylase-initiated base excision repair. Consistent with the hypothesis that there is a common repair intermediate resulting in cytotoxicity following treatment with both types of agents, both MMS and hmdUrd-initiated cell death are preceded by a similar rapid concentration-dependent suppression of DNA synthesis and a later cell cycle arrest in G(0)/G(1) and G(2)M phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号