首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
We analyzed the composition of aggregate (lake snow)-associated bacterial communities in Lake Constance from 1994 until 1996 between a depth of 25 m and the sediment surface at 110 m by fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes of various specificity. In addition, we experimentally examined the turnover of dissolved amino acids and carbohydrates together with the microbial colonization of aggregates formed in rolling tanks in the lab. Generally, between 40 and more than 80% of the microbes enumerated by DAPI staining (4′,6′-diamidino-2-phenylindole) were detected as Bacteria by the probe EUB338. At a depth of 25 m, 10.5% ± 7.9% and 14.2% ± 10.2% of the DAPI cell counts were detected by probes specific for α- and β-Proteobacteria. These proportions increased to 12.0% ± 3.3% and 54.0% ± 5.9% at a depth of 50 m but decreased again at the sediment surface at 110 m to 2.7% ± 1.4% and 41.1% ± 8.4%, indicating a clear dominance of β-Proteobacteria at depths of 50 and 110 m, where aggregates have an age of 3 to 5 and 8 to 11 days, respectively. From 50 m to the sediment surface, cells detected by a Cytophaga/Flavobacteria-specific probe (CF319a) comprised increasing proportions up to 18% of the DAPI cell counts. γ-Proteobacteria always comprised minor proportions of the aggregate-associated bacterial community. Using only two probes highly specific for clusters of bacteria closely related to Sphingomonas species and Brevundimonas diminuta, we identified between 16 and 60% of the α-Proteobacteria. In addition, with three probes highly specific for close relatives of the β-Proteobacteria Duganella zoogloeoides (formerly Zoogloea ramigera), Acidovorax facilis, and Hydrogenophaga palleroni, bacteria common in activated sludge, 42 to 70% of the β-Proteobacteria were identified. In the early phase (<20 h) of 11 of the 15 experimental incubations of aggregates, dissolved amino acids were consumed by the aggregate-associated bacteria from the surrounding water. This stage was followed by a period of 1 to 3 days during which dissolved amino acids were released into the surrounding water, paralleled by an increasing dominance of β-Proteobacteria. Hence, our results show that lake snow aggregates are inhabited by a community dominated by a limited number of α- and β-Proteobacteria, which undergo a distinct succession. They successively decompose the amino acids bound in the aggregates and release substantial amounts into the surrounding water during aging and sinking.  相似文献   

2.
Low concentrations of branched-chain fatty acids, such as isobutyric and isovaleric acids, develop during the ripening of hard cheeses and contribute to the beneficial flavor profile. Catabolism of amino acids, such as branched-chain amino acids, by bacteria via aminotransferase reactions and α-keto acids is one mechanism to generate these flavorful compounds; however, metabolism of α-keto acids to flavor-associated compounds is controversial. The objective of this study was to determine the ability of Brevibacterium linens BL2 to produce fatty acids from amino acids and α-keto acids and determine the occurrence of the likely genes in the draft genome sequence. BL2 catabolized amino acids to fatty acids only under carbohydrate starvation conditions. The primary fatty acid end products from leucine were isovaleric acid, acetic acid, and propionic acid. In contrast, logarithmic-phase cells of BL2 produced fatty acids from α-keto acids only. BL2 also converted α-keto acids to branched-chain fatty acids after carbohydrate starvation was achieved. At least 100 genes are potentially involved in five different metabolic pathways. The genome of B. linens ATCC 9174 contained these genes for production and degradation of fatty acids. These data indicate that brevibacteria have the ability to produce fatty acids from amino and α-keto acids and that carbon metabolism is important in regulating this event.  相似文献   

3.
4.
5.
Decarboxylation rates for a series of C-3 to C-6 alpha-keto acids were determined in the presence of resting cells and cell-free extracts of Streptococcus lactis var. maltigenes. The C-5 and C-6 acids branched at the penultimate carbon atom were converted most rapidly to the respective aldehydes in the manner described for alpha-carboxylases. Pyruvate and alpha-ketobutyrate did not behave as alpha-carboxylase substrates, in that O(2) was absorbed when they were reacted with resting cells. The same effect with pyruvate was noted in a nonmalty S. lactis, accounting for CO(2) produced by some "homofermentative" streptococci. Mixed substrate reactions indicated that the same enzyme was responsible for decarboxylation of alpha-ketoisocaproate and alpha-ketoisovalerate, but it appeared unlikely that this enzyme was responsible for the decarboxylation of pyruvate. Ultrasonic disruption of cells of the malty culture resulted in an extract inactive for decarboxylation of pyruvate in the absence of ferricyanide. Dialyzed cell-free extracts were inactive against all keto acids and could not be reactivated.  相似文献   

6.
7.
8.
α-Ionone, α-methylionone, and α-isomethylionone were converted by Aspergillus niger JTS 191. The individual bioconversion products from α-ionone were isolated and identified by spectrometry and organic synthesis. The major products were cis-3-hydroxy-α-ionone, trans-3-hydroxy-α-ionone, and 3-oxo-α-ionone. 2,3-Dehydro-α-ionone, 3,4-dehydro-β-ionone, and 1-(6,6-dimethyl-2-methylene-3-cyclohexenyl)-buten-3-one were also identified. Analogous bioconversion products from α-methylionone and α-isomethylionone were also identified. From results of gas-liquid chromatographic analysis during the fermentation, we propose a metabolic pathway for α-ionones and elucidation of stereochemical features of the bioconversion.  相似文献   

9.
Aspergillus niger JTS 191 was selected from many microorganisms tested as capable of converting ionones to other compounds having aromas. The individual transformation products from β-ionone were isolated and identified by comparison with synthetically derived compounds. The major products were (R)-4-hydroxy-β-ionone and (S)-2-hydroxy-β-ionone. 2-Oxo-, 4-oxo-, 3,4-dehydro-, 2,3-dehydro-4-oxo-, 3,4-dehydro-2-oxo-, (S)-2-acetoxy-, (R)-4-acetoxy-, and 5,6-epoxy-β-ionone and 4-(2,3,6-trimethylphenyl)-but-3-en-2-one were also identified. Analogous transformation products of β-methylionone also were identified. Based on gas-liquid chromatographic analysis during the fermentation, we propose two main oxidative pathways of β-ionone. The results of this study suggest that these transformations of β-ionones may be useful as tobacco-flavoring compounds.  相似文献   

10.
There is increasing evidence that a fine-tuned integrin cross talk can generate a high degree of specificity in cell adhesion, suggesting that spatially and temporally coordinated expression and activation of integrins are more important for regulated cell adhesive functions than the intrinsic specificity of individual receptors. However, little is known concerning the molecular mechanisms of integrin cross talk. With the use of beta(1)-null GD25 cells ectopically expressing the beta(1)A integrin subunit, we provide evidence for the existence of a cross talk between beta(1) and alpha(V) integrins that affects the ratio of alpha(V)beta(3) and alpha(V)beta(5) integrin cell surface levels. In particular, we demonstrate that a down-regulation of alpha(V)beta(3) and an up-regulation of alpha(V)beta(5) occur as a consequence of beta(1)A expression. Moreover, with the use of GD25 cells expressing the integrin isoforms beta(1)B and beta(1)D, as well as two beta(1) cytoplasmic domain deletion mutants lacking either the entire cytoplasmic domain (beta(1)TR) or only its "variable" region (beta(1)COM), we show that the effects of beta(1) over alpha(V) integrins take place irrespective of the type of beta(1) isoform, but require the presence of the "common" region of the beta(1) cytoplasmic domain. In an attempt to establish the regulatory mechanism(s) whereby beta(1) integrins exert their trans-acting functions, we have found that the down-regulation of alpha(V)beta(3) is due to a decreased beta(3) subunit mRNA stability, whereas the up-regulation of alpha(V)beta(5) is mainly due to translational or posttranslational events. These findings provide the first evidence for an integrin cross talk based on the regulation of mRNA stability.  相似文献   

11.
12.
1. The light chains of human immunoglobulin (Ig) exist in two forms, kappa (type K) and lambda (type L). The two types of chains can be partially separated by taking advantage of the fact that lambda-chains, for the most part, dissociate from reduced Ig at higher pH than do the kappa-chains. The same difference in dissociation of type K and L chains was observed with myeloma IgG and IgA proteins, but not with pathological IgM proteins. 2. When analysed in urea-glycine starch gels, pH7, both kappa- and lambda-chains show ten electrophoretic bands having the same mobilities as those of the whole light-chain subfractions. Normal kappa- and lambda-chains show similar differences in overall amino acid composition to those previously found with myeloma kappa- and lambda-chains and type K and L Bence-Jones proteins.  相似文献   

13.
Several preparations of staphylococcal alpha-toxin and delta-lysin were studied in order to compare hemolytic activity with capacity to lyse bacterial protoplasts. delta-Lysin in relatively low concentration lysed protoplasts of Sarcina lutea, protoplasts of Streptococcus faecalis, and spheroplasts of Escherichia coli. Lysis of bacterial protoplasts by preparations of alpha-toxin appeared to be due to contamination of the preparations with delta-lysin. Data comparing the protoplast-lysing activity of various lytic agents are presented.  相似文献   

14.
The assembly in living cells of heterotrimeric guanine nucleotide binding proteins from their constituent α, β, and γ subunits is a complex process, compounded by the multiplicity of the genes that encode them, and the diversity of receptors and effectors with which they interact. Monoclonal anti-β antibodies (ARC5 and ARC9), raised against immunoaffinity purified βγ complexes, recognize β subunits when not associated with γ and can thus be used to monitor assembly of βγ complexes. Complex formation starts immediately after synthesis and is complete within 30 min. Assembly occurs predominantly in the cytosol, and association of βγ complexes with the plasma membrane fraction starts between 15–30 min of chase. Three pools of β subunits can be distinguished based on their association with γ subunits, their localization, and their detergent solubility. Association of β and α subunits with detergent-insoluble domains occurs within 1 min of chase, and increases to reach a plateau of near complete detergent resistance within 30 min of chase. Brefeldin A treatment does not interfere with delivery of βγ subunits to detergent-insoluble domains, suggesting that assembly of G protein subunits with their receptors occurs distally from the BFA-imposed block of intracellular membrane trafficking and may occur directly at the plasma membrane.  相似文献   

15.
16.
1. The presence of beta-galactosidase (EC 3.2.1.23) in an acetic acid extract of ram testis is reported. Some properties of the crude enzyme preparation were studied. 2. The purification of beta-acetylglucosaminase (EC 3.2.1.30) and of beta-galactosidase from the ram-testis extract by ammonium sulphate precipitation and chromatography on a CM-cellulose column is described. 3. The final purifications of the separated enzymes achieved were for the beta-acetylglucosaminase 35 times and for the beta-galactosidase 99 times. 4. The possibility of using DEAE-cellulose and Sephadex G-200 to purify the enzymes was investigated.  相似文献   

17.
Intestinal intraepithelial lymphocytes (IELs) are distributed along the length of the intestine and are considered the frontline of immune surveillance. The precise molecular mechanisms, especially epigenetic regulation, of their development and function are poorly understood. The trimethylation of histone 3 at lysine 27 (H3K27Me3) is a kind of histone modifications and associated with gene repression. Kdm6b is an epigenetic enzyme responsible for the demethylation of H3K27Me3 and thus promotes gene expression. Here we identified Kdm6b as an important intracellular regulator of small intestinal IELs. Mice genetically deficient for Kdm6b showed greatly reduced numbers of TCRαβ+CD8αα+ IELs. In the absence of Kdm6b, TCRαβ+CD8αα+ IELs exhibited increased apoptosis, disturbed maturation and a compromised capability to lyse target cells. Both IL-15 and Kdm6b-mediated demethylation of histone 3 at lysine 27 are responsible for the maturation of TCRαβ+CD8αα+ IELs through upregulating the expression of Gzmb and Fasl. In addition, Kdm6b also regulates the expression of the gut-homing molecule CCR9 by controlling H3K27Me3 level at its promoter. However, Kdm6b is dispensable for the reactivity of thymic precursors of TCRαβ+CD8αα+ IELs (IELPs) to IL-15 and TGF-β. In conclusion, we showed that Kdm6b plays critical roles in the maturation and cytotoxic function of small intestinal TCRαβ+CD8αα+ IELs.Subject terms: Epigenetics, Gene regulation, Immunological disorders, T cells  相似文献   

18.
The ββα-Me restriction endonuclease (REase) Hpy99I recognizes the CGWCG target sequence and cleaves it with unusual stagger (five nucleotide 5′-recessed ends). Here we present the crystal structure of the specific complex of the dimeric enzyme with DNA. The Hpy99I protomer consists of an antiparallel β-barrel and two β4α2 repeats. Each repeat coordinates a structural zinc ion with four cysteine thiolates in two CXXC motifs. The ββα-Me region of the second β4α2 repeat holds the catalytic metal ion (or its sodium surrogate) via Asp148 and Asn165 and activates a water molecule with the general base His149. In the specific complex, Hpy99I forms a ring-like structure around the DNA that contacts DNA bases on the major and minor groove sides via the first and second β4α2 repeats, respectively. Hpy99I interacts with the central base pair of the recognition sequence only on the minor groove side, where A:T resembles T:A and G:C is similar to C:G. The Hpy99I–DNA co-crystal structure provides the first detailed illustration of the ββα-Me site in REases and complements structural information on the use of this active site motif in other groups of endonucleases such as homing endonucleases (e.g. I-PpoI) and Holliday junction resolvases (e.g. T4 endonuclease VII).  相似文献   

19.
Genes encoding a branched-chain alpha-keto acid dehydrogenase from Enterococcus faecalis 10C1, E1alpha (bkdA), E1beta (bkdB), E2 (bkdC), and E3 (bkdD), were found to reside in the gene cluster ptb-buk-bkdDABC. The predicted products of ptb and buk exhibited significant homology to the phosphotransbutyrylase and butyrate kinase, respectively, from Clostridium acetobutylicum. Activity and redox properties of the purified recombinant enzyme encoded by bkdD indicate that E. faecalis has a lipoamide dehydrogenase that is distinct from the lipoamide dehydrogenase associated with the pyruvate dehydrogenase complex. Specific activity of the ptb gene product expressed in Escherichia coli was highest with the substrates valeryl-coenzyme A (CoA), isovaleryl-CoA, and isobutyryl-CoA. In cultures, a stoichiometric conversion of alpha-ketoisocaproate to isovalerate was observed, with a concomitant increase in biomass. We propose that alpha-ketoisocaproate is converted via the BKDH complex to isovaleryl-CoA and subsequently converted into isovalerate via the combined actions of the ptb and buk gene products with the concomitant phosphorylation of ADP. In contrast, an E. faecalis bkd mutant constructed by disruption of the bkdA gene did not benefit from having alpha-ketoisocaproate in the growth medium, and conversion to isovalerate was less than 2% of the wild-type conversion. It is concluded that the bkd gene cluster encodes the enzymes that constitute a catabolic pathway for branched-chain alpha-keto acids that was previously unidentified in E. faecalis.  相似文献   

20.
1. A preparation of pea seedlings has been obtained that will incorporate [2-(14)C]mevalonate into squalene, alpha- and beta-amyrin and the phytosterols. 2. The (14)C/(3)H ratio in alpha- and beta-amyrin biosynthesized in the presence of [2-(14)C,4R-(3)H]-mevalonate is the same as in the starting material and in squalene; this gives experimental support to the mechanism for the cyclization of squalene proposed by Ruzicka for the formation of these pentacyclic triterpenoids. 3. The (14)C/(3)H ratio for beta-sitosterol was 5:3, the same as that in cholesterol in liver. 4. As the absence of (3)H from C-3 in beta-sitosterol was demonstrated (3)H must be present in the side chain and thus the H at C-24 is not lost during alkylation of the side chain; it probably migrates to C-25.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号