首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two novel arabinofuranohydrolases (AXH-d3 and AXH-m23) were purified from Bifidobacterium adolescentis DSM 20083. Both enzymes were induced upon growth of Bi. adolescentis on xylose and arabinoxylan-derived oligosaccharides. They were only active with arabinoxylans and therefore denoted as arabinoxylan arabinofuranohydrolases. Their optimal activity was at pH 6 and 30–40 °C. They were very specific in their mode of action and were clearly different from AXH-m from Aspergillus awamori. AXH-m23 released only arabinosyl groups, which were linked to the C-2 or C-3 position of singly substituted xylose residues in arabinoxylan oligomers. AXH-d3 hydrolysed C-3-linked arabinofuranosyl residues of doubly substituted xylopyranosyl residues of arabinoxylans and arab- inoxylan-derived oligosaccharides. No activity was observed with C-2-linked arabinofuranosyl residues of these doubly substituted xylopyranosyl residues, or against C-2- and C-3-linked arabinofuranosyl residues of singly substituted xylopyranosyl residues. The combination of AXH-d3 and AXH-m showed low debranching activity with highly substituted glucurono-arabinoxylans. However, arabinoxylan from wheat flour was debranched almost completely. Received: 12 January 1999 / Accepted: 17 January 1999  相似文献   

2.
Arabinoxylan arabinofuranohydrolase-D3 (AXHd3) from Bifidobacterium adolescentis releases only C3-linked arabinose residues from double-substituted xylose residues. A genomic library of B. adolescentis DSM20083 was screened for the presence of the axhD3 gene. Two plasmids were identified containing part of the axhD3 gene. The nucleotide sequences were combined and three open reading frames (ORFs) were found. The first ORF showed high homology with xylanases belonging to family 8 of the glycoside hydrolases and this gene was designated xylA. The second ORF was the axhD3 gene belonging to glycoside hydrolase family 43. The third (partial) ORF coded for a putative carboxylesterase. The axhD3 gene was cloned and expressed in Escherichia coli. Several substrates were employed in the biochemical characterization of recombinant AXHd3. The enzyme showed the highest activity toward wheat arabinoxylan oligosaccharides. In addition, -xylanase from Trichoderma sp. was able to degrade soluble wheat arabinoxylan polymer to a higher extent, after pretreatment with recombinant AXHd3. Arabinoxylan oligosaccharides incubated with a combination of recombinant AXHd3 and an -l-arabinofuranosidase from Aspergillus niger did not result in a higher maximal release of arabinose than incubation with these enzymes separately.  相似文献   

3.
Y.J. CHOI, C.J. KIM AND G.E. JI. 1996. β-Glucosidase was extracted from sonicated Bifidobacterium adolescentis Int-57 and partially purified by Sepharose CL-6B gel-filtration and DEAE-cellulose ion-exchange chromatography. The partially purified enzyme was confirmed to convert cycasin to a mutagen in the Ames and SOS chromotests. β-Glucosidase negative strains were unable to activate cycasin mutagenically.  相似文献   

4.
An arabinoxylan arabinofuranohydrolase was isolated from barley malt. The enzyme preparation, Ara 1, contained two polypeptides with apparent molecular masses of approximately 60 and approximately 66 kDa, a pI of 4.55 and almost identical N-terminal amino-acid sequences. With p-nitrophenyl alpha-L-arabinofuranoside (pNPA) as substrate, Ara 1 exhibited a Km of 0.5 mM and a Vmax of 6.7 micromol. min-1.(mg of protein)-1. Maximum activity was displayed at pH 4.2 and 60 degrees C, and, under these conditions, the half-life of the enzyme was 8 min. The Ara 1 preparation showed no activity against p-nitrophenyl alpha-L-arabinopyranoside or p-nitrophenyl beta-D-xylopyranoside. Substrate preference and specificity were investigated using pure oligosaccharides and analysis by TLC and nano-probe NMR. Ara 1 released arabinose from high-molecular-mass arabinoxylan and arabinoxylan-derived oligosaccharides but was inactive against linear or branched-chain arabinan. Arabinose was readily released from both singly and doubly substituted xylo-oligosaccharides. Whereas single 2-O-linked and 3-O-linked arabinose substituents on non-reducing terminal xylose were released at similar rates, there was a clear preference for 2-O-linked arabinose on internal xylose residues. When Ara 1 acted on oligosaccharides with doubly substituted, non-reducing terminal xylose, the 3-O-linked arabinose group was preferred as the initial point of attack. Oligosaccharides with doubly substituted internal xylose were poor substrates and no preference could be determined. The enzyme described here is the first reported arabinoxylan arabinofuranohydrolase which is able to release arabinose from both singly and doubly substituted xylose, and it hydrolyses p-nitrophenyl alpha-L-arabinofuranoside at a rate similar to that observed for oligosaccharide substrates.  相似文献   

5.
To investigate the hypothesis that an oral supplementation of Bifidobacterium adolescentis protects against a diet-induced nonalcoholic steatohepatitis in a mouse model, C57BL/6 mice were fed either a Western-style or a control diet±tap water fortified with B. adolescentis (5×107 cfu/ml) ad libitum for 12 weeks. Mice fed a Western-style diet gained significantly more weight than mice fed a control diet and developed a mild steatohepatitis. Western-style diet fed groups concomitantly treated with B. adolescentis had significantly decreased liver damage, whereas portal endotoxin levels and toll-like receptor-4 protein levels as well as myeloid differentiation factor 88 mRNA were increased in livers of both Western-style diet fed groups. The protective effects of the B. adolescentis were associated with a significant attenuation of the formation of reactive oxygen species, activation of nuclear factor κB (NFκB) and induction of markers of inflammation in the liver. Taken together, our data suggest that an oral supplementation of the B. adolescentis attenuates diet-induced steatohepatitis, and this effect is associated with prevention from lipid peroxidation, NFκB activation and finally inflammation in the liver.  相似文献   

6.
Abstract Pelobacter carbinolicus strain GraBd1 fermented methylacetoin, which is a good carbon source for growth ( μ = 0.16 h−1) of this strict anaerobic bacterium, to acetone, acetate and ethanol (main products), acetoin, 2,3-butanediol and methylbutanediol (minor products). During growth on 2,3-butanediol, acetoin and methyl-acetoin the formation of a protein exhibiting acetoin: DCPIP oxidoreductase activity is induced. This enzyme amounts to a substantial portion of the soluble proteins. In vitro, it cleaves acetoin into acetate and acetaldehyde but reacts also with diacetyl or methylacetoin. We discussed four different models for the degradation of acetoin in the cells and came to the conclusion that in vivo the oxidative-thiolytic acetoin cleavage model is most probably realized in P. carbinolicus .  相似文献   

7.
This study describes a novel isolation procedure for major glycolipids from Bifidobacterium adolescentis 94 BIM. The procedure consists of the use of supercritical carbon dioxide (scCO(2)) with hydro-methanolic solution as co-solvent. The major glycolipids were isolated using the following operating conditions: pressure, 30 MPa, co-solvent concentration, 10% (9:1, methanol/water, v/v), CO(2) flow rate, 5 g/min, extraction time and temperature, 2h and 55 degrees C, respectively. The reference glycolipids sample was prepared by classical organic solvent extraction followed by chromatographic purification. All isolates were characterized by TLC and the major glycolipids additionally by enzyme linked immunosorbent (ELISA). Sixty milligrams of glycolipids with similar immunoreactivity as the reference glycolipids were isolated from 1g of freeze-dried biomass (6% of yield).  相似文献   

8.
The generation of a fermentable hydrolysate from arabinoxylan is an important prerequisite for utilization of wheat hemicellulose in production of ethanol or other value added products. This study examined the individual and combined efficiencies of four selected, commercial, multicomponent enzyme preparations Celluclast 1.5 L (from Trichoderma reesei), Finizym (from Aspergillus niger), Ultraflo L (from Humicola insolens), and Viscozyme L (from Aspergillus aculeatus) in catalyzing arabinose and xylose release from water-soluble wheat arabinoxylan in an industrial fermentation residue (still bottoms) in lab scale experiments. Different reaction conditions, i.e. enzyme dosage, reaction time, pH, and temperature, were evaluated in response surface and ternary mixture designs. Ultraflo L treatment gave optimal arabinose release: treatment (6 h, 60 °C, pH 6) with this enzyme preparation liberated up to 46% by weight (wt.%) of the theoretically maximal arabinose yield from the substrate. Celluclast 1.5 L was superior to the other enzyme preparations in releasing xylose and catalyzed release of up to 25 wt.% of the theoretical maximum xylose yield (6 h, 60 °C, pH 4). Prolonged treatment for 24 h with a 50:50 mixture of Celluclast 1.5 L and Ultraflo L at 50 °C, pH 5 exhibited a synergistic effect in xylose release and 62 wt.% of the theoretically maximal xylose yield was achieved. Addition of pure β-xylosidase from T. reesei to the Ultraflo L preparation released the same amounts of xylose from the substrate as the 50:50 mixture of Celluclast 1.5 L and Ultraflo L. The data thus signified that the synergistic effect in xylose release between Celluclast 1.5 L and Ultraflo L is the result of a three-step interaction mechanism involving α-l-arabinofuranosidase and different xylan degrading enzyme activities in the two enzyme preparations.  相似文献   

9.
T Ishii 《Phytochemistry》1991,30(7):2317-2320
Hydrolysis of bamboo shoot cell-walls with Driselase (a fungal enzyme preparation) gave an arabinoxylan trisaccharide with ferulic and acetic acids as ester groups. The structure of this oligosaccharide was determined to be O-[2-O-acetyl-5-O-[E)-feruloyl)-alpha-L-arabinofuranosyl]-(1----3) -O-beta- D-xylopyranosyl-(1----4)-D-xylopyranose, on the basis of spectroscopy and methylation analysis.  相似文献   

10.
Using a rapid phenol extraction assay, an enzyme was purified from uninfected HeLa cells that can cleave the 5'-terminal protein (VPg) from poliovirus RNA. Both cytoplasmic and nuclear extracts had enzymes with similar behavior. A polypeptide of molecular weight 27,000 was the major one present in the purified preparation. Assuming that this protein is the enzyme, a very low turnover number was calculated for it. The purified enzyme would cleave the tyrosine-phosphate bond linking VPg to poliovirus RNA with minimal degradation of the RNA or of VPg. If the RNA was first treated with proteinase K to degrade VPg, leaving a small peptide on the RNA, this peptide could also be removed by the enzyme. If the RNA was degraded with T1 RNase, leaving VPg attached to a nonanucleotide, the enzyme still would cleave off VPg, although incompletely. If the RNA was degraded completely, leaving either pUp or pU attached to VPg, the enzyme would not remove the nucleotides from the protein. Thus, for the enzyme to be active requires some length of polynucleotide attached to the protein but only a short peptide need be present for the enzyme to act.  相似文献   

11.
12.
A halophilic, thermotolerant Bacillus strain (B3-15), isolated from water of a shallow, marine hot spring at Vulcano Island (Eolian Islands, Italy), produced an exocellular polysaccharide at 165 mg l–1. It grew on kerosene as sole carbon source and was resistant to Cd2+, Zn2+, As2+ and Hg2+. From 16S rDNA analysis, strain B3-15 was related to B. licheniformis. The exopolysaccharide was a tetrasaccharide repeating unit essentially constituted by sugars having a manno-pyranosidic configuration.  相似文献   

13.
Oil residues containing high molecular mass hydrocarbons, rich in polyaromatic compounds, are frequent end-products of crude oil processing and are poorly biodegradable. Their disposal poses an environmental problem. Through batch-enrichments from contaminated soils we have isolated and characterized seven bacterial strains that can use a residue from crude oil processing as a source of carbon and energy. The residue was a complex mixture of high molecular mass compounds, including saturated, aromatic and polycyclic aromatic hydrocarbons (PAHs). Analysis of the metabolic profiles of the strains isolated showed that they could all metabolize long-chain-length alkanes efficiently, but not PAHs. Strains degrading naphthalene, a simple PAH, did exist in the soil inocula used, but could be isolated only when enrichments were performed using pure naphthalene as the sole carbon source. All strains tested emulsified the oil residue and their ability to produce surfactants was studied.  相似文献   

14.
15.
It was reported previously that supernatants of cultures of Bacillus mesentericus TO-A promote the growth of Bifidobacterium species. In this study, a new growth-promoting factor, BM-1, was purified from the supernatant of such a culture and its chemical structure was determined. BM-1 was identified as 3,3-dihydroxyazetidine, and it promoted the growth of several strains of Bifidobacterium.  相似文献   

16.
17.
18.

Background

Dilute oxalic acid pretreatment has drawn much attention because it could selectively hydrolyse the hemicellulose fraction during lignocellulose pretreatment. However, there are few studies focusing on the recovery of oxalic acid. Here, we reported a new approach to recycle oxalic acid used in pretreatment via ethanol extraction.

Results

The highest xylose content in hydrolysate was 266.70 mg xylose per 1 g corncob (85.0% yield), which was achieved using 150 mmol/L oxalic acid under the optimized treatment condition (140 °C, 2.5 h). These pretreatment conditions were employed to the subsequent pretreatment using recycled oxalic acid. Oxalic acid in the hydrolysate could be recycled according to the following steps: (1) water was removed via evaporation and vacuum drying, (2) ethanol was used to extract oxalic acid in the remaining mixture, and (3) oxalic acid and ethanol were separated by reduced pressure evaporation. The total xylose yields could be stabilized by intermittent adding oxalic acid, and the yields were in range of 46.7–64.3% in this experiment.

Conclusions

This sustainable approach of recycling and reuse of oxalic acid has a significant potential application for replacing traditional dilute mineral acid pretreatment of lignocellulose, which could contribute to reduce CO2 emissions and the cost of the pretreatment.
  相似文献   

19.
Arabinoxylan (`Cellace') corn fiber, containing 28.1% (w/w) as l-arabinose and 32.8% (w/w) as d-xylose, was hydrolyzed by a crude enzyme containing -xylanase, -xylosidase and -l-arabinofuranosidase originating from the extracellular culture broth of Penicillium funiculosum. The resultant hydrolysate contained l-arabinose, d-xylose and small amounts of other mono- and oligosaccharides. The l-arabinose and d-xylose were 21.3% (w/w) and 18.7% (w/w), respectively, based on the initial arabinoxylan. Williopsis saturnus var. saturnus, which metabolizes d-xylose without using l-arabinose, was aerobically cultured in the hydrolysate at 30 °C for 96 h. The sugar solution after removal of yeast cells contained l-arabinose and d-xylose which were 20.3% (w/w) and 0.002% (w/w), respectively, of the initial arabinoxylan. The solution was decolorized with activated carbon, and deionized with cation- and anion-exchange resins. The clear sugar solution thus obtained was composed of l-arabinose and d-xylose which were 19.3% (w/w) and 0.001% (w/w), respectively, of the initial arabinoxylan. After concentration of the sugar solution under reduced pressure, followed by crystallization of l-arabinose, 16% (w/w) l-arabinose (based on the initial arabinoxylan) was obtained as crude crystals. No d-xylose was detected in the final preparation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号