首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxygen is favoured as terminal electron acceptor in aerobic and facultative microorganisms because of its appropriate physical state, satisfactory solubility and its desirable combinations of kinetic and thermodynamic properties. Oxygen is generally reduced by four electrons to yield oxygen, but there are important biological consequences of, and roles for, the partial reduction to superoxide and peroxide. Complex and multiple regulatory networks ensure (i) the utilization of oxygen in preference to other oxidants, (ii) the synthesis of oxygen-consuming enzymes with appropriate properties (particularly affinity for the ligand), and (iii) appropriate cellular protection in the event of oxidative stress. This contribution reviews the terminal respiratory oxidases of selected Gram-negative bacteria and microbial haemoglobin-like proteins.Recent studies of the cytochromebd-type oxidases ofEscherichia coli andAzotobacter vinelandii suggest that, despite probable similarity at the amino acid level, the reactivities of these oxidases with oxygen are strikingly different. The respiratory protection afforded to nitrogenase in the obligately aerobic diazotrophA. vinelandii by the cytochromebd complex appears to be accompanied by, and may be the result of, a low affinity for oxygen and a high Vmax. The poorly characterized cytochromeo-containing oxidase in this bacterium is not required for respiratory protection. InE. coli, the cytochromebd-type oxidase has a remarkably high affinity for oxygen, consistent with the view that this is an oxygen-scavenging oxidase utilized under microaerobic conditions. The demonstration of substrate (i.e. oxygen) inhibition in this complex suggests a mechanism whereby wasteful electron flux through a non-proton-pumping oxidase is avoided at higher dissolved oxygen tensions. The demonstration of two ligandbinding sites (haemsd andb 595) in oxidases of this type suggests plausible mechanisms for this phenomenon. InE. coli, assembly of the cytochromebd-type oxidase (and of periplasmic cytochromesb andc) requires the presence of an ABC transporter, which may serve to export haem or some assembly factor' to the periplasm.There is at least one additional oxygen-consuming protein inE. coli — the flavohaemoglobin encoded by thehmp gene. Globin-like proteins are also widely distributed in other bacteria, fungi and protozoa, but most have unknown functions. The function of HMP and the related chimaeric flavohaemoglobins in other bacteria and yeast is unknown; one of several possibilities for HMP is that its relatively low affinity for oxygen during turnover with NADH as substrate could enable it to function as a sensor of falling (or rising) cytoplasmic oxygen concentrations.(until October 1994: Section of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14853-8101, USA)  相似文献   

2.
Theaa3-type cytochromecoxidase ofRhodobacter sphaeroideshas been overexpressed up to seven fold over that in wild-type strains by engineering a multicopy plasmid with all the required oxidase genes and by establishing optimum growth conditions. The two operons containing the three structural genes and two assembly genes for cytochromecoxidase were ligated into a pUC19 vector and reintroduced into several oxidase-deletedR. sphaeroidesstrains. Under conditions of relatively high pH and maximal aeration, high levels of expression were observed. A smaller expression vector, pBBR1MCS, and a fructose promoter (fruP)5were found not to enhance cytochromecoxidase expression inR. sphaeroides.An improved cytochromecoxidase purification protocol is reported, which combines histidine elution from a nickel affinity column and anion-exchange chromatography, and results in a higher yield and purity than previously obtained.  相似文献   

3.
Cytochromec oxidase was purified from mitochondria ofEuglena gracilis and separated into 15 different polypeptide subunits by polyacrylamide gel electrophoresis. All 15 subunits copurify through various purification procedures, and the subunit composition of the isolated enzyme is identical to that of the immunoprecipitated one. Therefore, the 15 protein subunits represent integral components of theEuglena oxidase. In anin vitro protein-synthesizing system using isolated mitochondria, polypeptides 1–3 were radioactive labeled in the presence of [35S]methionine. This further identifies these polypeptides with the three largest subunits of cytochromec oxidse encoded by mitochondrial DNA in other eukaryotic organisms. By subtraction, the other 12 subunits can be assigned to nuclear genes. The isolatedEuglena oxidase was highly active withEuglena cytochromec 558 and has monophasic kinetics. Using horse cytochromec 550 as a substrate, activity of the isolated oxidase was rather low. These findings correlate with the oxidase activity of mitochondrial membranes. Again, reactivity was low with cytochromec 550 and 35-fold higher with theEuglena cytochromec 558. The data show that the cytochromec oxidase of the protistEuglena is different from other eukaryotic cytochromec oxidases in number and size of subunits, and also with regard to kinetic properties and substrate specificity.Abbreviations kDa kilodalton - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate - TN turnover number  相似文献   

4.
Electron transport in theParacoccus denitrificans respiratory chain system is considerably more rapid when it includes the membrane-bound cytochromec 552 than with either solubleParacoccus c 550 or bovine cytochromec; a pool function for cytochromec is not necessary. Low concentrations ofParacoccus or bovine cytochromec stimulate the oxidase activity. This observation could explain the multiphasic Scatchard plots which are obtained. A negatively charged area on the back side ofParacoccus c which is not present in mitochondrialc could be a control mechanism forParacoccus reactions.Paracoccus oxidase and reductase reactions with bovinec show the same properties as mammalian systems; and this is true ofParacoccus oxidase reactions with its own soluble cytochromec if added polycation masks the negatively charged area. Evidence for different oxidase and reductase reaction sites on cytochromec include: (1) stimulation of the oxidase but not reductase by a polycation; (2) differences in the inhibition of the oxidase and reductases by monoclonal antibodies toParacoccus cytochromec; and (3) reaction of another bacterial cytochromec withParacoccus reductases but not oxidase. Rapid electron transport occurs in cytochromec-less mutants ofParacoccus, suggesting that the reactions result from collision of diffusing complexes.  相似文献   

5.
Kinetic studies of the electron transfer processes performed by cytochrome oxidase have assigned rates of electron transfer between the metal centers involved in the oxidation of ferrocytochromec by molecular oxygen. Transient-state studies of the reaction with oxygen have led to the proposal of a sequence of carriers from cytochromec, to CuA, to cytochromea, and then to the binuclear (i.e., cytochromea 3-CuB) center. Electron exchange rates between these centers agree with relative center-to-center distances as follows; cytochromec to CuA 5–7 Å, cytochromec to cytochromea 20–25 Å, CuA to cytochromea 14–16 Å and cytochromea to cytochrome a3-CuB 8–10 Å. It is proposed that the step from cytochromea to the binuclear center is the key control point in the reaction and that this step is one of the major points of energy transduction in the reaction cycle.  相似文献   

6.
Bovine cytochromec oxidase usually contains 3–4 mol of tightly bound cardiolipin per cytochromeaa 3 complex. At least two of these cardiolipins are required for full electron transport activity. Without the tightly bound cardiolipin, cytochromec oxidase has only 40–50% of its original activity when assayed in detergents that support activity, e.g., dodecyl maltoside. By measuring the restoration of electron transport activity, functional binding constants for cardiolipin and a number of cardiolipin analogues have been evaluated (K d,app=1 µM for cardiolipin). These binding constants agree reasonably well with direct measurement of the binding using [14C]-acetyl-cardiolipin (K d <0.1 µM) when the enzyme is solubilized with Triton X-100. These data are discussed in relationship to the wealth of data that is known about the association of cardiolipin with cytochromec oxidase and the other mitochrondrial electron transport complexes and transporters.  相似文献   

7.
The electron transfer pathway in the respiratory particles ofStreptomyces griseus was studied. Vitamins K3 and K5,α- andβ-naphthoquinones, served as the hydrogen acceptors in succinate oxidation, and succinate- and reduced nicotinamide adenine dinucleotide (NADH)-cytochromec reductase activities, but were ineffective for NADH oxidase activity. Vitamin K seemed to mediate the hydrogen from NADH-diaphorase to cytochromec. Chlorpromazine inhibited electron transfer in the respiratory particles. Cyanide completely inhibited the electron transfer system initially, however, oxygen consumption increased gradually with time. AlthoughS. griseus possesses cytochromesa, b, c and pigment 625 (probablyd), the electron transfer chain was complicated. Two terminal oxidase activities (cytochromec oxidase and cytochromec peroxidase activities) were detected in the respiratory particles ofS. griseus. Dedicated to Prof. Shoichiro Usami celebrating his sexagenary birthday.  相似文献   

8.
Visible region of an absorption spectrum was followed in cells of original strains and of rough mutants ofSaccharomyces cerevisiae andS. cerevisiae var.ellipsoideus. It was found that there are no substantial differences in relative content of cytochromesb andc in aerobically grown rough and smooth yeast forms, in spite of the fact that both forms differ substantially in the metabolic oxygen quotient. If the cytochromes present were not reduced in washed cells by dithionite or by substrate addition, the rough forms exhibited a lower cytochrome b:c ratio than the smooth forms. Under anaerobic conditions of cultivation, the rough forms retained a typical aerobic spectrum, lacking, however, the cytochromea and a3 band; the ratio of cytochromesb andc was changed in favour of cytochromeb (from the original 1.7: 1 up to 3.4: 1). The inability of the rough mutants to produce anaerobic cytochrome spectrum represented by cytochrome b1 was connected with their inability to reproduce under anaerobic conditions.  相似文献   

9.
An analysis of resonance Raman scattering data from CO-bound cytochromec oxidase and from the photodissociated enzyme indicates that histidine may not be coordinated to the iron atom of cytochromea 3 in the CO-bound form of the enzyme. Instead, the data suggest that either a water molecule or a different amino acid residue occupies the proximal ligand position. From these data, it is postulated that ligand exchange on cytochromea 3 can occur under physiological conditions. Studies of mutant hemoglobins have demonstrated that tyrosinate binds preferentially to histidine in the ferric forms of the proteins. In cytochromec oxidase tyrosine residues are located near the histidine residues recently implicated in coordination to cytochromea 3 (Shapleighet al., 1992; Hosleret al., this volume). Expanding on these concepts, we propose a model for proton translocation at the O2-binding site based on proximal ligand exchange between tyrosine and histidine on cytochromea 3. The pumping steps take place at the level of the peroxy intermediate and at the level of the ferryl intermediate in the catalytic cycle and are thereby consistent with the recent results of Wilkstrom (1989) who found that proton pumping occurs only at these two steps. It is shown that the model may be readily extended to account for the pumping of two protons at each of the steps.  相似文献   

10.
Photosynthetic bacteria offer excellent experimental opportunities to explore both the structure and function of the ubiquinol-cytochromec oxidoreductase (bc 1 complex). In bothRhodobacter sphaeroides andRhodobacter capsulatus, thebc 1 complex functions in both the aerobic respiratory chain and as an essential component of the photosynthetic electron transport chain. Because thebc 1 complex in these organisms can be functionally coupled to the photosynthetic reaction center, flash photolysis can be used to study electron flow through the enzyme and to examine the effects of various amino acid substitutions. During the past several years, numerous mutations have been generated in the cytochromeb subunit, in the Rieske iron-sulfur subunit, and in the cytochromec 1 subunit. Both site-directed and random mutagenesis procedures have been utilized. Studies of these mutations have identified amino acid residues that are metal ligands, as well as those residues that are at or near either the quinol oxidase (Qo) site or the quinol reductase (Qi) site. The postulate that these two Q-sites are located on opposite sides of the membrane is supported by these studies. Current research is directed at exploring the details of the catalytic mechanism, the nature of the subunit interactions, and the assembly of this enzyme.  相似文献   

11.
Paracoccus denitrificans is able to grow on the C1 compounds methanol and methylamine. These compounds are oxidized to formaldehyde which is subsequently oxidized via formate to carbon dioxide. Biomass is produced by carbon dioxide fixation via the ribulose biphosphate pathway. The first oxidation reaction is catalyzed by the enzymes methanol dehydrogenase and methylamine dehydrogenase, respectively. Both enzymes contain two different subunits in an 22 configuration. The genes encoding the subunits of methanol dehydrogenase (moxF andmoxI) have been isolated and sequenced. They are located in one operon together with two other genes (moxJ andmoxG) in the gene ordermoxFJGI. The function of themoxJ gene product is not yet known.MoxG codes for a cytochromec 551i , which functions as the electron acceptor of methanol dehydrogenase. Both methanol dehydrogenase and methylamine dehydrogenase contain PQQ as a cofactor. These so-called quinoproteins are able to catalyze redox reactions by one-electron steps. The reaction mechanism of this oxidation will be described. Electrons from the oxidation reaction are donated to the electron transport chain at the level of cytochromec. P. denitrificans is able to synthesize at least 10 differentc-type cytochromes. Five could be detected in the periplasm and five have been found in the cytoplasmic membrane. The membrane-bound cytochromec 1 and cytochromec 552 and the periplasmic-located cytochromec 550 are present under all tested growth conditions. The cytochromesc 551i andc 553i , present in the periplasm, are only induced in cells grown on methanol, methylamine, or choline. The otherc-type cytochromes are mainly detected either under oxygen limited conditions or under anaerobic conditions with nitrate as electron acceptor or under both conditions. An overview including the induction pattern of allP. denitrificans c-type cytochromes will be given. The genes encoding cytochromec 1, cytochromec 550, cytochromec 551i , and cytochromec 553i have been isolated and sequenced. By using site-directed mutagenesis these genes were mutated in the genome. The mutants thus obtained were used to study electron transport during growth on C1 compounds. This electron transport has also been studied by determining electron transfer rates inin vitro experiments. The exact pathways, however, are not yet fully understood. Electrons from methanol dehydrogenase are donated to cytochromec 551i . Further electron transport is either via cytochromec 550 or cytochromec 553i to cytochromeaa 3. However, direct electron transport from cytochromec 551i to the terminal oxidase might be possible as well. Electrons from methylamine dehydrogenase are donated to amicyanin and then via cytochromec 550 to cytochromeaa 3, but other routes are used also.P. denitrificans is studied by several groups by using a genetic approach. Several genes have already been cloned and sequenced and a lot of mutants have been isolated. The development of a host/vector system and several techniques for mutation induction that are used inP. denitrificans genetics will be described.  相似文献   

12.
The K+-ionophores valinomycin and nonactin induce a qualitatively identical change of the visible spectrum of isolated oxidized cytochromec oxidase (red shift), but the amplitude is half with nonactin. Valinomycin, in the presence or absence of a protonophore, stimulates the respiration of the reconstituted enzyme to a higher extent than nonactin and results in a higherK m for cytochromec. In contrast, nonactin causes a fivefold rate of proton conductivity across a liposomal membrane, after induction of a K+-diffusion potential. The data indicate that respiratory control by these antibiotics is not only due to degradation of a membrane potential, but rather to specific interaction with and modification of cytochromec oxidase.  相似文献   

13.
Azotobacter vinelandii cells readily oxidize the dye 3,3′-diaminobenzidine (DAB), which has been previously used as an electron donor for studies on the mitochondrial cytochromec oxidase reaction. The DAB oxidase activity inA. vinelandii cells was 10-fold lower than that noted for theN,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) oxidase reaction, which is commonly used to measure terminal oxidase activity both in bacteria and mitochondria. Analyses of cell-free extracts show that DAB oxidase activity is concentrated almost exclusively in theA. vinelandii membrane fractions, most notably in the “R3” electron transport particle (ETP). Oxidation studies, which employed both whole cells and the ETP fraction, show DAB oxidase activity to be markedly sensitive to KCN, NaN3, and NH2OH. A manometric assay system was developed which readily measured DAB oxidase activity in bacteria. Preliminary studies indicate that ascorbate-DAB oxidation inAzotobacter vinelandii measures terminal cytochrome oxidase activity in a manner similar to the TMPD oxidase reaction.  相似文献   

14.
Cytochromec oxidase oxidizes cytochromec and reduces molecular oxygen to water. When the enzyme is embedded across a membrane, this process generates electrical and pH gradients, and these gradients inhibit enzyme turnover. This respiratory control process is seen both in intact mitochondria and in reconstituted proteoliposomes. Generation of pH gradients and their role in respiratory control are described. Both electron and proton movement seem to be implicated. A topochemical arrangement of redox centers, like that in the photosynthetic reaction center and the cytochromebc 1 complex, ensures charge separation as a result of electron movement. Proton translocation does not require such a topology, although it does require alternating access to the two sides of the membrane by proton-donating and accepting groups. The sites of respiratory control within the enzyme are discussed and a model presented for electron transfer and proton pumping by the oxidase in the light of current knowledge of the transmembranous location of the redox centers involved.  相似文献   

15.
Summary Two strains ofSaccharomyces cerevisiae were used to study the synthesis of superoxide dismutase. One strain (cytochromec-deficient) contained 5–10% of the normal amounts of total cytochromec, while the other strain was a wild type. The cytochromec-deficient mutant had lower specific growth rate, growth yield, and oxygen uptake than the wild type. The superoxide dismutase and catalase activities, in both strains, were significantly lower under anaerobic than under aerobic conditions. Furthermore, under aerobic conditions the mutant contained higher levels of superoxide dismutase than the wild type which may be attributed to the higher intracellular flux of superoxide radicals caused by the cytochromec deficiency. The mutant also showed a lower level of catalase which was due to glucose repression.Paper Number 10007 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695, U.S.A. The use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Research Service of the products named, nor criticism of similar ones not mentioned.  相似文献   

16.
The aerobic adaptation of anaerobically grownP. denitrificans carried out under conditions of limited growth is characterized by an exponential decrease of nitrite reductase activity and a sharp increase of cytochrome oxidase and a slow increase of NADH:cytochromec oxidase reductase and succinate dehydrogenase activities. The adaptation in a minimal adaptation medium under conditions of active or blocked protein synthesis showed that in addition to the degradation component of turnover during the aerobic adaptation other degradation enzyme(s), whose synthesis is induced by oxygen, are involved. This degradation system plays an essential role in the rapid disappearance of nitrite reductase and a pronounced decrease of the membranebound cytochromec oxidase activities during aerobic adaptation in the minimal adaptation medium.  相似文献   

17.
The reactivity of cytochromesc derived from various organisms withPseudomonas aeruginosa nitrite reductase and cow cytochrome oxidase has been studied.Generally, cytochromesc isolated from primitive organisms react very rapidly with the bacterial nitrite reductase but do not react with cow cytochrome oxidase while those from higher organisms react poorly with the nitrite reductase but react very rapidly with the animal oxidase. The reactivity of cytochromec with the bacterial nitrite reductase reflects very well the evolutionary position of the organism from which it is isolated, while that with cow cytochrome oxidase seems to be related to the extent of adaptation of the parent organism to molecular oxygen. The results obtained in the present investigation suggests that cytochromec molecule which reacts very rapidly with the bacterial nitrite reductase but does not react with cow cytochrome oxidase has evolved to that which reacts very poorly with the nitrite reductuase but reacts very rapidly with the animal oxidase. It is also inferred that the evolution of cytochromec molecule may be caused by the evolution of cytochrome oxidase, and that the latter may be intimately related to genesis of molecular oxygen in the biosphere.Special Symposium on Photochemistry and the Origins of Life, Sixth International Congress on Photobiology, Bochum, Germany.  相似文献   

18.
Regulation of respiration and ATP synthesis in higher organisms: Hypothesis   总被引:12,自引:0,他引:12  
The present view on the regulation of respiration and ATP synthesis in higher organisms implies only Michaelis-Menten type kinetics and respiratory control as regulatory principles. Recent experimental observations, suggesting further regulatory mechanisms at respiratory chain complexes, are reviewed. A new hypothesis is presented implying regulation of respiration and ATP synthesis in higher organisms mainly via allosteric modification of respiratory chain complexes, in particular of cytochromec oxidase. The allosteric effectors, e.g., metabolites, cofactors, ions, hormones, and the membrane potential are suggested to change the activity and the coupling degree of cytochromec oxidase by binding to specific sites at nuclear coded subunits. Recent results on the structure and activity of cytochromec oxidase, supporting the hypothesis, are reviewed.Dedicated to Professor Dr. Carl Martius on the occasion of his 80th birthday.  相似文献   

19.
Phospholipids and Emasol activate cytochrome oxidase by increasing its affinity for its substrate, cytochromec. Cardiolipin was most effective in activating cytochrome oxidase among phospholipids tested. Prior formation of a cytochromec-cytochrome oxidase complex changes the effect of phospholipids. In addition to their structural role in the last segment of the electron transport system, phospholipids can protect the enzyme from heat treatment and mercurial inhibition. They facilitate the interaction between cytochrome oxidase and cytochromec, as well as the cytochromec analogue, protamine.  相似文献   

20.
The cytochromes of the bacteriumStreptomyces erythreus have been investigated. Membrane-bounda-, b-, andc-type cytochromes were found together with a green pigment, which was found in both a soluble and membrane-bound form. Cells containing the green pigment exhibited cyanide-insensitive oxygen uptake. The CO-binding pigments included cytochromea 3, ab-type cytochrome, cytochrome P450, and the green pigment. Photodissociation spectra at various low temperatures, in the presence or absence of oxygen, revealed cytochromeaa 3 to be the predominant cytochrome terminal oxidase. The green pigment was capable of electron transport; the relationship of the pigment to the remainder of the electron transport chain remains to be ascertained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号