共查询到20条相似文献,搜索用时 31 毫秒
1.
The pterin (bactopterin) of carbon monoxide dehydrogenase from Pseudomonas carboxydoflava 总被引:5,自引:0,他引:5
Radioactively labeled carbon monoxide (CO) dehydrogenase has been obtained in good yield and purity from Pseudomonas carboxydoflava grown in the presence of [32P]phosphate. One enzyme molecule contained an average of 8.32 molecules of phosphate. The entire phosphate content was confined to 2 molecules of FAD and 2 molecules of a pterin. These were noncovalently bound. Molybdoenzyme cofactors could be extracted into N-methyl formamide; pterins were isolated by thin-layer chromatography. CO dehydrogenase contained a novel pterin, different from molybdopterin, which was also resolved in other bacterial molybdoenzymes. Therefore, it was tentatively named bactopterin. The characteristic features of bactopterin were as follows. A relative molecular mass, Mr, of 730 which was much greater than that of molybdopterin (330) (Mr values refer to molybdenum-free forms of the cofactors; presumably, the latter were also devoid of the sulfhydryl groups contained in the native compounds). A content of 2 molecules of phosphate/molecule compared to only 1 phosphate in molybdopterin. Bactopterin was three times less susceptible to air oxidation than molybdopterin. Native bactopterin was cleaved by perchloric acid into two phosphorous-containing fragments with Mr of 330 and 420. The smaller one is believed to be very similar to molybdopterin, the larger one was not a pterin but probably contained an aromatic structure. 相似文献
2.
3.
Purification and some properties of carbon monoxide dehydrogenase from Pseudomonas carboxydohydrogena 总被引:1,自引:7,他引:1 下载免费PDF全文
A soluble yellow CO dehydrogenase from CO-autotrophically grown cells of Pseudomonas carboxydohydrogena was purified 35-fold in seven steps to better than 95% homogeneity with a yield of 30%. The final specific activity was 180 μmol of acceptor reduced per min per mg of protein as determined by an assay based on the CO-dependent reduction of thionin. Methyl viologen, nicotinamide adenine dinucleotide (phosphate), flavin mononucleotide, and flavin adenine dinucleotide were not reduced by the enzyme, but methylene blue, thionin, and toluylene blue were reduced. The molecular weight of native enzyme was determined to be 4 × 105. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate revealed at least three nonidentical subunits of molecular weights 14,000 (α), 28,000 (β), and 85,000 (γ). The ratio of densities of each subunit after electrophoresis was about 1:2:6 (α/β/γ), suggesting an α3β3γ3 structure for the enzyme. The purified enzyme was free of formate dehydrogenase and nicotinamide adenine dinucleotide-specific hydrogenase activities, but contained particulate hydrogenase-like activity with thionin as electron acceptor. Known metalchelating agents tested had no effect on CO dehydrogenase activity. No divalent cations tested stimulated enzyme activity. The native enzyme does not contain Ni since cells assimilated little 63Ni during growth, and the specific 63Ni content of the enzyme declined during purification. The isoelectric point of the native enzyme was found to be 4.5 to 4.7. The Km for CO was found to be 63 μM. The spectrum of the enzyme and its protein-free extract revealed that it contains bound flavin. The cofactor was flavin adenine dinucleotide based on enzyme digestion and thin-layer chromatography. One mole of native enzyme contains at least 3 mol of noncovalently bound flavin adenine dinucleotide. 相似文献
4.
Abstract Isolation of plasmid DNA followed by plasmid curing was carried out to examine the relationship of plasmid to carbon monoxide dehydrogenase (CO-DH) production in carboxydobacteria. A small plasmid of almost identical size (1.52−1.76 × 106 ) was present in Pseudomonas carboxydovorans, Azotobacter sp.1, and Azomonas sp.2. Azomonas sp.1 contained two kinds of plasmids (1.5 × 106 and 2.47 × 106 ). No plasmids were found in Pseudomonas carboxydohydrogena , JC1, and HY1. A plasmid-cured clone of P. carboxydovorans was obtained by growing the cells at 37°C. The cured cell was able to grow CO autotrophically on solid, but not in liquid, medium. CO-DH of the cured cell was active and consisted of three subunits similar to those found in the wild-type enzyme, with the exception that the β subunit of the enzyme was larger than that of the wild-type enzyme. These results suggest that the small plasmids do not carry genes encoding CO-DH but may have gene(s) for processing the β subunit of the enzyme. 相似文献
5.
Chen J Huang S Seravalli J Gutzman H Swartz DJ Ragsdale SW Bagley KA 《Biochemistry》2003,42(50):14822-14830
Carbon monoxide dehydrogenase/acetyl-CoA synthase (CODH/ACS) is a bifunctional enzyme that catalyzes the reversible reduction of carbon dioxide into carbon monoxide and the coupled synthesis of acetyl-CoA from the carbon monoxide produced. Exposure of CODH/ACS from Moorella thermoacetica to carbon monoxide gives rise to several infrared bands in the 2100-1900 cm(-1) spectral region that are attributed to the formation of metal-coordinated carbon monoxide species. Infrared bands attributable to M-CO are not detected in the as-isolated enzyme, suggesting that the enzyme does not contain intrinsic metal-coordinated CO ligands. A band detected at 1996 cm(-1) in the CO-flushed enzyme is assigned as arising from CO binding to a metal center in cluster A of the ACS subunit. The frequency of this band is most consistent with it arising from a terminally coordinated Ni(I) carbonyl. Multiple infrared bands at 2078, 2044, 1970, 1959, and 1901 cm(-1) are attributed to CO binding at cluster C of the CODH subunit. All infrared bands attributed to metal carbonyls decay in a time-dependent fashion as CO(2) appears in the solution. These observations are consistent with the enzyme-catalyzed oxidation of carbon monoxide until it is completely depleted from solution during the course of the experiments. 相似文献
6.
Redox titrations of carbon monoxide dehydrogenase (CODH) from Clostridium thermoaceticum were performed using the reductant CO and the oxidant thionin. Titrations were followed at 420 nm, a wavelength sensitive to redox changes of the iron-sulfur clusters in the enzyme. When CODH was oxidized by just enough thionin to maximize A420, two molecules of CO per mole of CODH dimer (4 equiv/mol) reduced the enzyme fully. Likewise, 4 equiv/mol of thionin oxidized the fully-reduced enzyme to the point where A420 maximized. The four n = 1 redox sites which titrated in this region were designated group I sites. They include at least two iron-sulfur clusters, [Fe/S]A and [Fe/S]B, and two other sites, A' and B'. The [Fe4S4]2+/1+ cluster in CODH is included in this group. [Fe/S]B and B' have reduction potentials (at pH 8) below -480 mV vs NHE; [Fe/S]A and A' have reduction potentials above that value. The reduction potential of either [Fe/S]B or B' is near to the CO/CO2 couple at pH 8 (-622 mV). When CODH was oxidized by more than enough thionin to maximize A420, some of the excess thionin oxidized the so-called group II redox sites. These sites have reduction potentials more positive than group I and do not exhibit changes at 420 nm when titrated. Titration of group II sites required 1-2 equiv/mol. EPR of reduced group II sites exhibited the gav = 1.82 signal. When these sites were oxidized, the only signal present had g values at 2.075, 2.036, and 1.983.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
7.
Paramagnetic centers of carbon monoxide dehydrogenase from aceticlastic Methanosarcina barkeri 总被引:5,自引:0,他引:5
Carbon monoxide dehydrogenase from Methanosarcina barkeri, purified to 95% homogeneity, contains 30 Fe, 2 Ni, 1 Zn, and 1 Cu (per alpha 2 beta 2 enzyme). Core extrusion experiments indicate 6 [4Fe-4S] clusters/tetramer, and electron paramagnetic resonance (epr) spectroscopy detects at least one of these clusters, in the reduced form, with apparent g values of 2.05, 1.94, and 1.90, and Em9.2-390 mV. A second epr signal, also seen in the reduced enzyme, has apparent g values of 2.005, 1.91, and 1.76, and Em9.2-35 mV. Two signals were seen in thionin-oxidized enzyme, one with a line shape suggestive of Cu(II), and the other resembling that of a [3Fe-4S] cluster. The enzymes nonphysiological substrate, CO, caused several spectral changes to the reduced enzyme, most notably a shift of the g = 1.76 feature to g = 1.73. 相似文献
8.
Abstract Soluble fractions prepared from cells of Pseudomonas carboxydovorans bearing a small plasmid (1.76 × 106 ) exhibited proteolytic activity on the β-subunit of CO dehydrogenase (CO-DH) in plasmid-cured cells of the same strain, implying that the plasmid carries gene(s) for processing the β subunit of the enzyme at the post-translational level. The protease was found to be a constitutive enzyme. It did not hydrolyze the β subunit of CO-DH in Pseudomonas carboxydohydrogena . Analysis of CO-DH after transformation of the cured cells with the small plasmid confirmed that the plasmid plays a role in the modification of the β subunit of CO-DH in P. carboxydovorans . 相似文献
9.
2,4,6-trinitrotoluene reduction by carbon monoxide dehydrogenase from Clostridium thermoaceticum 总被引:1,自引:0,他引:1
Huang S Lindahl PA Wang C Bennett GN Rudolph FB Hughes JB 《Applied and environmental microbiology》2000,66(4):1474-1478
Purified CO dehydrogenase (CODH) from Clostridium thermoaceticum catalyzed the transformation of 2,4,6-trinitrotoluene (TNT). The intermediates and reduced products of TNT transformation were separated and appear to be identical to the compounds formed by C. acetobutylicum, namely, 2-hydroxylamino-4,6-dinitrotoluene (2HA46DNT), 4-hydroxylamino-2,6-dinitrotoluene (4HA26DNT), 2, 4-dihydroxylamino-6-nitrotoluene (24DHANT), and the Bamberger rearrangement product of 2,4-dihydroxylamino-6-nitrotoluene. In the presence of saturating CO, CODH catalyzed the conversion of TNT to two monohydroxylamino derivatives (2HA46DNT and 4HA26DNT), with 4HA26DNT as the dominant isomer. These derivatives were then converted to 24DHANT, which slowly converted to the Bamberger rearrangement product. Apparent K(m) and k(cat) values of TNT reduction were 165 +/- 43 microM for TNT and 400 +/- 94 s(-1), respectively. Cyanide, an inhibitor for the CO/CO(2) oxidation/reduction activity of CODH, inhibited the TNT degradation activity of CODH. 相似文献
10.
Characterization and purification of carbon monoxide dehydrogenase from Methanosarcina barkeri. 总被引:10,自引:15,他引:10 下载免费PDF全文
Carbon monoxide-dependent production of H2, CO2, and CH4 was detected in crude cell extracts of acetate-grown Methanosarcina barkeri. This metabolic transformation was associated with an active methyl viologen-linked CO dehydrogenase activity (5 to 10 U/mg of protein). Carbon monoxide dehydrogenase activity was inhibited 85% by 10 microM KCN and was rapidly inactivated by O2. The enzyme was nearly homogeneous after 20-fold purification, indicating that a significant proportion of soluble cell protein was CO dehydrogenase (ca. 5%). The native purified enzyme displayed a molecular weight of 232,000 and a two-subunit composition of 92,000 and 18,000 daltons. The enzyme was shown to contain nickel by isolation of radioactive CO dehydrogenase from cells grown in 63Ni. Analysis of enzyme kinetic properties revealed an apparent Km of 5 mM for CO and a Vmax of 1,300 U/mg of protein. The spectral properties of the enzyme were similar to those published for CO dehydrogenase from acetogenic anaerobes. The physiological functions of the enzyme are discussed. 相似文献
11.
Purification and properties of carbon monoxide dehydrogenase from Methanococcus vannielii. 总被引:2,自引:4,他引:2 下载免费PDF全文
Carbon monoxide dehydrogenase was purified to homogeneity from Methanococcus vannielii grown with formate as the sole carbon source. The enzyme is composed of subunits with molecular weights of 89,000 and 21,000 in an alpha 2 beta 2 oligomeric structure. The native molecular weight of carbon monoxide dehydrogenase, determined by gel electrophoresis, is 220,000. The enzyme from M. vannielii contains 2 g-atoms of nickel per mol of enzyme. Except for its relatively high pH optimum of 10.5 and its slightly greater net positive charge, the enzyme from M. vannielii closely resembles carbon monoxide dehydrogenase isolated previously from acetate-grown Methanosarcina barkeri. Carbon monoxide dehydrogenase from M. vannielii constitutes 0.2% of the soluble protein of the cell. By comparison the enzyme comprises 5% of the soluble protein in acetate-grown cells of M. barkeri and approximately 1% in methanol-grown cells. 相似文献
12.
Acetogenic bacteria, as determined with Clostridium thermoaceticum, synthesize acetate by the acetyl-CoA pathway which involves the reduction of CO2 to a methyl group and then combination of the methyl with CoA and a carbonyl group formed from CO or CO2 (Wood, H.G., Ragsdale, S.W., and Pezacka, E. (1986) Trends Biochem. Sci. 11, 14-18). Carbon monoxide dehydrogenase (CODH), the key enzyme in this pathway not only catalyzes the oxidation of CO to CO2 but also the final step, the synthesis of acetyl-CoA from a methyl group, CO, and CoA. Previously, it has been shown that ferredoxin can stimulate exchange of CO with CH3 14COSCoA (Ragsdale, S.W., and Wood, H.G. (1985) J. Biol. Chem. 260, 3970-3977). In the present study, it has been observed that ferredoxin and CODH can form an electrostatically stabilized complex. In order to identify the ferredoxin binding region on CODH, the ferredoxin and CODH were cross-linked by using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. The cross-linked CODH-ferredoxin adduct was enzymatically as active as the uncross-linked complex. The native CODH and cross-linked CODH-ferredoxin complex were subjected to cyanogen bromide cleavage. By comparison of the high-performance liquid chromatography peptide profiles, it was observed that the mobility of at least one peptide is altered in the CODH-ferredoxin cross-linked complex. The peptide was identified with residues 229-239 of the alpha-subunit of CODH. 相似文献
13.
Purification of carbon monoxide dehydrogenase, a nickel enzyme from Clostridium thermocaceticum 总被引:20,自引:0,他引:20
Carbon monoxide dehydrogenase (CO dehydrogenase) has been purified from the homoacetate-fermenting bacterium, Clostridium thermoaceticum. By use of 63Ni, it has been determined that the dehydrogenase is a metallo nickel enzyme. Nickel was rapidly taken up by the organism and most of the ingested metal was found to be incorporated into CO dehydrogenase. As estimated by gel filtration, the native enzyme has a molecular weight of 410,000. Ferredoxin and a membrane-bound b-type cytochrome, both obtained from C. thermoaceticum, are rapidly reduced by the enzyme in the presence of carbon monoxide and both are considered to be native electron carriers. FMN and Desulfovibrio vulgaris cytochrome c3 were also reduced by the enzyme, while spinach ferredoxin, FAD, NAD, and NADP were not. CO dehydrogenase activity was not appreciably affected by propyl iodide, methyl iodide, carbon tetrachloride, or metal chelators, but was reversibly inhibited by KCN. A method for the in situ assay of CO dehydrogenase in polyacrylamide gels is presented. 相似文献
14.
Steve W. Ragsdale Lars G. Ljungdahl Daniel V. DerVartanian 《Biochemical and biophysical research communications》1982,108(2):658-663
Carbon monoxide dehydrogenase from Clostridiumthermoaceticum contains two different Fe4S4 rhombic-type EPR resonances with g-values at 2.04, 1.94, 1.90 and 2.01, 1.86, 1.75, respectively. The enzyme after reacting with CO or HCO3?/CO2 also reveals in EPR signal at g = 2.07 and 2.02. This signal, readily observed at 95K, is attributed to a Ni(III) interaction with a radical species formed from CO or HCO3?/CO2. 相似文献
15.
Occurrence of nickel in carbon monoxide dehydrogenase from Clostridium pasteurianum and Clostridium thermoaceticum 总被引:4,自引:11,他引:4 下载免费PDF全文
H L Drake 《Journal of bacteriology》1982,149(2):561-566
The carbon monoxide (CO) dehydrogenase activity band from Clostridium pasteurianum was shown to contain nickel by in situ activity staining of polyacrylamide gels. However, the majority of the nickel in cell extracts was found to electrophorese independently of CO dehydrogenase. Comparative analysis with Clostridium thermoaceticum demonstrated that, although the majority of nickel was accounted for in CO dehydrogenase in anaerobic extracts, the metal dissociated from the enzyme when inactivated by oxidation. 相似文献
16.
Nickel-specific, slow-binding inhibition of carbon monoxide dehydrogenase from Rhodospirillum rubrum by cyanide 总被引:2,自引:0,他引:2
The inhibition of purified carbon monoxide dehydrogenase from Rhodospirillum rubrum by cyanide was investigated in both the presence and absence of CO and electron acceptor. The inhibition was a time-dependent process exhibiting pseudo-first-order kinetics under both sets of conditions. The true second-order rate constants for inhibition were 72.2 M-1 s-1 with both substrates present and 48.9 and 79.5 M-1 s-1, respectively, for the reduced and oxidized enzymes incubated with cyanide. CO partially protected the enzyme against inhibition after 25-min incubation with 100 microM KCN. Dissociation constants of 8.46 microM (KCN) and 4.70 microM (CO) were calculated for the binding of cyanide and CO to the enzyme. Cyanide inhibition was fully reversible under an atmosphere of CO after removal of unbound cyanide. N2 was unable to reverse the inhibition. The competence of nickel-deficient (apo) CO dehydrogenase to undergo activation by NiCl2 was unaffected by prior incubation with cyanide. Cyanide inhibition of holo-CO dehydrogenase was not reversed by addition of NiCl2. 14CN- remained associated with holoenzyme but not with apoenzyme through gel filtration chromatography. These findings suggest that cyanide is a slow-binding, active-site-directed, nickel-specific, reversible inhibitor of CO dehydrogenase. We propose that cyanide inhibits CO dehydrogenase by being an analogue of CO and by binding through enzyme-bound nickel. 相似文献
17.
Extracts of heterotrophically grown cells of Pseudomonas carboxydovorans were found to contain an inhibitor of carbon monoxide dehydrogenase (CO-DH). The inhibitor activity was not detected in CO-autotrophically grown cells. The inhibitor was extremely stable to heat treatment based on the extent of inhibition of CO-DH activity. The extent of inhibition was proportional to the amount of cell extract added to the reaction mixture. The inhibition was independent of a prior incubation period of the extracts with CO-DH. The inhibitor was precipitable with ammonium sulfate, phenol, and trichloroacetic acid. It was passed through benzoylated dialysis tubing and Amicon ultrafiltration membrane YM2. Denaturing and nondenturing polyacrylamide gel electrophoresis of CO-DH inactivated by inhibitor revealed that the mobilities of native enzyme and subunits were identical to those of active CO-DH. The inhibitor-treated CO-DH retained its original antigenic sites and exhibited enzyme activity upon activity staining. The CO-DH inhibitor of P. carboxydovorans was also active on CO-DHs from Pseudomonas carboxydohydrogena, Acinetobacter sp. strain JC1, and Pseudomonas carboxydoflava. 相似文献
18.
The role of nickel in CO oxidation and electron flow was investigated in carbon monoxide dehydrogenase from Rhodospirillum rubrum. The Fe-S centers of oxidized, nickel-containing (holo) CO dehydrogenase were completely reduced within 1 min of exposure to CO. The Fe-S centers of oxidized, nickel-deficient (apo) CO dehydrogenase were not reduced during a 35-min incubation in the presence of CO. Apo-CO dehydrogenase Fe-S centers were reduced by dithionite. The Fe-S centers of cyanide-inhibited, holo-CO dehydrogenase were not reduced in the presence of CO but were reduced by dithionite. Treatment of apo-CO dehydrogenase with cobalt(II), zinc(II), and iron(II) resulted in association of these metal ions (0.70, 1.2, and 0.86 mol of M2+/mol, respectively) with the protein but no increase in specific activity. Purified holo-CO dehydrogenase contained 1.1 mol of nickel/mol of protein and could not be further activated upon addition of NiCl2, suggesting the presence of one catalytic nickel site on the enzyme. The M2+-treated enzymes could not be further activated by addition of NiCl2 as opposed to the untreated apoenzyme, whose activity was stimulated 50-100-fold to the level of holoenzyme upon addition of NiCl2. When placed under CO, the Fe-S centers of the cobalt-treated enzyme became reduced over a 35-min time course, as opposed to the zinc- and iron-treated enzymes, which remained oxidized. We conclude that nickel, or an appropriate nickel analogue in the nickel site, mediates electron flow from CO to the Fe-S centers of CO dehydrogenase. 相似文献
19.
Q-Band ENDOR studies on carbon monoxide dehydrogenase (CODH) from the acetogenic bacterium Clostridium thermoaceticum provided unambiguous evidence that the reaction of CO with CODH produces a novel metal center that includes at least one nickel, at least three iron sites, and the carbon of one CO. The 57Fe hyperfine couplings determined by ENDOR are similar to the values used in simulation of the M?ssbauer spectra [Lindahl et al. (1989) J. Biol. Chem. 265, 3880-3888]. EPR simulation using these AFe values is equally good for a 4Fe or a 3Fe center. The 13C ENDOR data are consistent with the binding of a carbon atom to either the Ni or the Fe component of the spin-coupled cluster. The 13C hyperfine couplings are similar to those determined earlier for the C0-bound form of the H cluster of the Clostridium pasteurianum hydrogenase, proposed to be the active site of hydrogen activation [Telser et al. (1987) J. Biol. Chem. 262, 6589-5694]. The 61 Ni ENDOR data are the first nickel ENDOR recorded for an enzyme. The EPR simulation using the ENDOR-derived hyperfine values for 61Ni is consistent with a single nickel site in the Ni-Fe-C complex. On the basis of our results and the M?ssbauer data [Lindahl et al. (1989) J. Biol. Chem. 265, 3880-3888], we propose the stoichiometry of the components of the Ni-Fe-C complex to be Ni1Fe3-4S greater than or equal to 4C1, with four acid-labile sulfides. 相似文献
20.
Carbon monoxide dehydrogenase (CODH) is the key enzyme of autotrophic growth with CO or CO2 and H2 by the acetyl-CoA pathway. The enzyme from Clostridium thermoaceticum catalyzes the formation of acetyl-CoA from the methyl, carbonyl, and CoA groups and has separate binding sites for these moieties. In this study, we have determined the role of arginine residues in binding of CoA by CODH. Phenylglyoxal, an arginine-specific reagent, inactivated CODH, and CoA afforded about 80-85% protection against this inactivation. The other ligands, such as the carbonyl and the methyl groups, gave no protection. By circular dichroism, it was shown that the loss of activity is not due to extensive structural changes in CODH. Earlier, we showed that tryptophan residues are located at the CoA binding site of CODH [Shanmugasundaram, T., Kumar, G. K., & Wood, H. G. (1988) Biochemistry 27, 6499-6503]. A comparison of the fluorescence spectra of the native and phenylglyoxal-modified enzymes indicates that the reactive arginine residues appear to be located close to fluorescing tryptophans. Fluorescence spectral studies with CoA analogues or its components showed that CoA interacts with the tryptophan(s) of CODH through its adenine moiety. In addition, evidence is presented that the arginines interact with the pyrophosphate moiety of CoA. 相似文献