首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Twelve families with Wiskott-Aldrich syndrome (WAS) were studied by linkage analysis using 10 polymorphic marker loci from the X-chromosome pericentromeric region. The results confirm close linkage of WAS to the DXS14, DXS7, TIMP, and DXZ1 loci and are consistent with previous data suggesting that WAS maps to the proximal Xp and is flanked by the DXS14 and DXS7 loci. The strongest linkage (Z = 10.19 at theta = 0.00) was found to be between WAS and the hypervariable DXS255 locus, a marker locus already mapped between DXS7 and DXS14 and which was informative for all meioses included in this analysis. Linkage of the WAS to two pericentromeric Xq loci, DXS1 and PGK1, was also established. On the basis of these results, accurate predictive testing should now be feasible in the majority of WAS families.  相似文献   

2.
J V Garcia  C Jones    A D Miller 《Journal of virology》1991,65(11):6316-6319
The host range of retroviruses is determined primarily by the presence of specific receptors on target cells which are recognized by the retroviral envelope glycoprotein. Somatic cell hybrids have been used to determine the chromosomal locations of several retroviral receptors in mice prior to their molecular cloning. Here we report that by using human-Chinese hamster somatic cell hybrids and a retroviral vector, we have mapped the receptor for the amphotropic murine leukemia virus to the pericentromeric region of human chromosome 8.  相似文献   

3.
Aland Island eye disease (AIED) is an X-chromosomal disorder characterized by reduced visual acuity, progressive axial myopia, regular astigmatism, latent nystagmus, foveal hypoplasia, defective dark adaptation, and fundus hypopigmentation. The syndrome was originally reported in 1964 in a family on the Aland Islands. To determine the localization of the AIED gene, linkage studies were performed in this family. total of 37 polymorphisms, covering loci on the entire X chromosome, were used. By two-point analysis the strongest evidence for linkage was obtained between AIED and DXS255 (maximum lod score [Zmax] 4.92 at maximum recombination fraction [theta max] .00). Marker loci DXS106, DXS159, and DXS1 also showed no recombination with AIED. Other positive lod scores at theta max .00 were obtained with markers localized in the XY homologous region in Xq13-q21, but the numbers of informative meioses were small. Multilocus linkage analysis indicated that the most probable location of AIED is in the pericentromeric region between DXS7 and DXS72. These results rule out localizations of AIED more distal on Xp that have been proposed by others. Our data do not exclude the possibility that AIED and incomplete congenital stationary night blindness are caused by mutations in the same gene. This question should be resolved by careful clinical comparison of the disorders and ultimately by the molecular dissection of the genes themselves.  相似文献   

4.
A primary genetic map of the pericentromeric region of the human X chromosome   总被引:17,自引:0,他引:17  
We report a genetic linkage map of the pericentromeric region of the human X chromosome, extending from Xp11 to Xq13. Genetic analysis with five polymorphic markers, including centromeric alpha satellite DNA, spanned a distance of approximately 38 cM. Significant lod scores were obtained with linkage analysis in 26 families from the Centre d'Etude du Polymorphisme Humain, establishing estimates of genetic distances between these markers and across the centromere. Physical mapping experiments, using a panel of somatic cell hybrids segregating portions of the X chromosome due to translocations or deletions, are in agreement with the multilocus linkage analysis and indicate the order Xp11 . . . DXS7(L1.28)-TIMP- DXZ1(alpha satellite, cen)- DXS159(cpX73)-PGK1 . . . Xq13. The frequency of recombination in the two approximately 20-cM intervals flanking alpha satellite on either chromosome arm was roughly proportional to the estimated physical distance between markers; no evidence for a reduced crossover frequency was found in the intervals adjacent to the centromere. However, significant interfamilial variations in recombination rates were noted in this region. This primary map should be useful both as a foundation for a higher resolution centromere-based linkage map of the X chromosome and in the localization of genes to the pericentromeric region.  相似文献   

5.
An unusual large heterochromatic segment around the pericentromeric region of the X-chromosome is reported. In normal circumstances, the pericentromeric region of the X-chromosome is negative by the restriction endonuclease AluI/Giemsa technique. However, this unusual X-chromosome was found to have AluI resistant (positive) chromatin. The evolution of extra heterochromatin is a postzygotic event as substantiated by the presence of a normal cell line.  相似文献   

6.
Seven polymorphic cosmids previously assigned to 10cen-q11.2 were mapped between D10S34 and RBP3, and ordered by interphase in situ hybridization and yeast artificial chromosome analysis. Some of the presumed unique sequences from the centromeric region have homologies either within the same region or within the centromeric region of other chromosomes.  相似文献   

7.
We present a detailed molecular evolutionary analysis of 1.2 Mb from the pericentromeric region of human 15q11. Sequence analysis indicates the region has been subject to extensive interchromosomal and intrachromosomal duplications during primate evolution. Comparative FISH analyses among non-human primates show remarkable quantitative and qualitative differences in the organization and duplication history of this region - including lineage-specific deletions and duplication expansions. Phylogenetic and comparative analyses reveal that the region is composed of at least 24 distinct segmental duplications or duplicons that have populated the pericentromeric regions of the human genome over the last 40 million years of human evolution. The value of combining both cytogenetic and experimental data in understanding the complex forces which have shaped these regions is discussed.  相似文献   

8.
Club foot is one of the most common human congenital malformations. Distal arthrogryposis type I (DA-1) is a frequent cause of dominantly inherited club foot. Performing a genomewide search using short tandem repeat (STR) polymorphisms, we have mapped a DA-1 gene to the pericentromeric region of chromosome 9 in a large kindred. Linkage analysis has generated a positive lod score of 5.90 at theta = 0, with the marker GS-4. Multiple recombinants bracketing the region have been identified. Analysis of an additional family demonstrated no linkage to the same locus, indicating likely locus heterogeneity. Of the autosomal congenital contracture disorders causing positional foot deformities, this is the first to be mapped.  相似文献   

9.
10.
Patients with Peutz-Jeghers syndrome (PJS), an autosomal dominant disease characterized by hamartomatous polyposis of the gastrointestinal tract, are thought to be predisposed to malignancies of the digestive tract, genital tract, and other organs. Using microsatellite markers on chromosome 19p, we have closely defined the region containing the gene responsible for this disorder through linkage analysis in seven affected families. The lack of obligate recombinants at two of these loci, D19S883 and D19S878, with maximum LOD scores of 2.88 and 3.75, confirmed the localization of the PJS locus to chromosome 19. Furthermore, haplotype analysis placed the PJS locus within a 6-cM telomeric region of chromosome 19p, between D19S886 and D19S565. Received: 18 August 1997 / Accepted: 5 November 1997  相似文献   

11.
We report a high-resolution genetic linkage map of the region Xp11.4 to Xq13.3, spanning the centromere of the X chromosome and encompassing approximately 30 cM. This 18-locus map is composed of 11 intervals that are spaced on average about 3 cM apart. Markers incorporated into the map together detect 19 distinct polymorphisms and include five genes (TIMP, SYP, AR, CCG1, PGK1), the OATL1 cluster, the hypervariable locus DXS255, the centromeric locus DXZ1, and 10 other anonymous DNA segments. Given that this map spans roughly one-fifth of the length of the X chromosome and includes many loci currently used in both diagnosis and mapping of X-linked disorders, it should be useful for genetic counseling and for guiding efforts to clone disease genes in this region.  相似文献   

12.
Familial multiple endocrine neoplasia type 2A (MEN 2A) is a dominantly inherited cancer syndrome characterized by tumors in tissues derived from the neural crest. The disease manifests as medullary carcinoma of the thyroid, pheochromocytoma, and hyperparathyroidism. The MEN2A locus has been mapped near the centromere of chromosome 10 by linkage analysis. Statistical analyses have not resolved the location of MEN2A among several close markers. We have used our family material to refine the positions of 36 identified and confirmed crossovers among the markers most closely linked to MEN2A. This high-resolution meiotic mapping panel will help order loci in this pericentromeric region and narrow the region in which MEN2A maps.  相似文献   

13.
14.
The non-recombining Y chromosome is expected to degenerate over evolutionary time, however, gene gain is a common feature of Y chromosomes of mammals and Drosophila. Here, we report that a large palindrome containing interchromosomal segmental duplications is located in the vicinity of the first amplicon detected in the Y chromosome of D. melanogaster. The recent appearance of such amplicons suggests that duplications to the Y chromosome, followed by the amplification of the segmental duplications, are a mechanism for the continuing evolution of Drosophila Y chromosomes.  相似文献   

15.
A refined genetic linkage map for the pericentromeric region of human chromosome 10 has been constructed from data on 12 distinct polymorphic DNA loci as well as the locus for multiple endocrine neoplasia type 2A (MEN 2A), a dominantly inherited cancer syndrome. The map extends from D10S24 (at 10p13-p12.2) to D10S3 (at 10q21-q23) and is about 70 cM long. Overall, higher female than male recombination frequencies were observed for this region, with the most remarkable female excess in the immediate vicinity of the centromere, as previously reported. Most of the DNA markers in this map are highly informative for linkage and the majority of the interlocus intervals are no more than 6 cM apart. Thus this map should provide a fine framework for future efforts in more detailed mapping studies around the centromeric area. A set of ordered cross-overs identified in this work is a valuable resource for rapidly and accurately localizing new DNA clones isolated from the pericentromeric region.  相似文献   

16.
To further define the structure of the pericentromeric region of human chromosome 7, we have identified and characterized a YAC clone (YAC 311.H5) containing the D7S1480 locus, which maps to the short arm near the centromere of this chromosome, by linkage in CEPH families and radiation hybrid analysis. This YAC contains two new blocks of alphoid DNA (named Z5 and Z6). Both Z5 and Z6 show monomeric structures and a lack of higher-order repeats, and, therefore, belong to suprachromosomal family type 4 (M1). The orientation of the two blocks and the physical distances over the region were defined by pulsed-field gel electrophoresis (PFGE) and fluorescence in situ hybridization on chromatin fibers (FiberFISH). A YAC contig spanning the centromeric region has been developed by STS content.  相似文献   

17.
Linkage analysis of six Chinese families with neurofibromatosis type 1 (NF1) confirms the location of the NF1 gene to the region of the proximal long arm of chromosome 17, as in Caucasian populations. The diagnosis of NF1 was made according to internationally accepted criteria. The markers used were D17S71, D17S58, D17S33, and EVI2A. The overall odds in favor of NF1 lying within this linkage group in the families studied are over 150,000:1, with a maximum location score of 5.112 for the interval D17S58-EVI2A.  相似文献   

18.
We have identified a chromosome duplication in the pericentromeric region of human chromosome 11 located in 11p11 and 11q14. A detailed physical map of each duplicated region was generated to describe the nature of the duplication, the involvement at the centromere and to resolve the correct maps. All clones were evaluated to ensure they were representative of their genetic origin. The order of clones, based on their marker content, as well as the distance covered was determined by SEGMAP. Each duplication encompasses more than 1 Mb of DNA and appears to be chromosome 11 specific. Ten STS markers were mapped within each duplication. Comparative sequence analysis along the duplication identified 35 nucleotide changes in 2,036 bp between the two copies, suggesting the duplication occurred over 14 million years ago. A suggested organization of the pericentromeric region, including the duplications and alpha-related repetitive sequences, is presented.  相似文献   

19.
Summary The localisation of the gene for Hunter syndrome (MPS II) has been studied in 11 families using 12 polymorphic DNA markers, one on the short arm and the remaining 11 located at various points on the long arm of the X chromosome. Lod scores for seven probes were uniformly negative for all values of ; positive scores at values of =0.10 or more were obtained for the five probes located most distally on the long arm (52A, F9C, DX13, St14-1, F8C). Current data suggest the most likely order of the loci to be: 52A, F9C, Hunter, DX13, St14-1, F8C-qter; the Hunter locus may thus be close to that for the fragile site at Xq27.  相似文献   

20.
Five intervals in the pericentromeric region of human chromosome 10 have been defined using a panel of somatic cell hybrids carrying portions of the chromosome. The map positions of twelve markers, consisting of four genes and eight anonymous DNA segments, have been localized by assignment to one of the five intervals. Several other markers could be placed in specific intervals by genetic linkage to assigned loci. When previously published data are incorporated, the summary map of the pericentromeric region encompasses thirty-two loci in bands 10p11.2-q11.2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号