首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Scutella from ungerminated grains of barley (Hordeum vulgare L. cv Pirkka) take up leucine at a slow rate, which increases rapidly during germination. When endosperms were removed from the grains after imbibition for 4 hours or after germination for 12 or 72 hours, the increase in the rate of leucine uptake was greatly accelerated during subsequent incubation of the embryos or scutella. These increases were rapidly inhibited by cordycepin and cycloheximide, suggesting that protein synthesis, probably synthesis of the carrier protein, was required for the development of the uptake activity.

In separated embryos or scutella, the increases in the leucine uptake activity were inhibited by glutamine. The inhibitions caused by glutamine and cycloheximide were not additive, suggesting that glutamine did not interfere with the function of the carrier but repressed its synthesis. Glutamine did not inhibit the simultaneous increase in peptide uptake; in this respect, its effect was specific for leucine uptake, which appears to be due to a general amino acid uptake system.

Some other protein amino acids also inhibited the increase in leucine uptake without inhibiting the increase in peptide uptake. However, these effects were smaller than that of glutamine.

These results suggest that the transfer of leucine (and other amino acids) from the endosperm to the seedling in a germinating barley grain is regulated at the uptake step by repression of the synthesis of the amino acid carrier protein by glutamine and—possibly to a lesser extent—by some other amino acids taken up from the endosperm.

  相似文献   

2.
Scutella separated from germinating grains of barley (Hordeum vulgare L. cv Himalaya) took up [14C]glutamine at an initial rate of about 10 micromoles·gram−1·hour−1 in the standard assay conditions (pH 5, 30°C, 1 millimolar glutamine). Inhibition by unlabeled glutamine and by dinitrophenol indicated that about 95% of the uptake was due to carrier-mediated active transport. The pH optimum of the uptake was 5, and after correction for a nonmediated component the uptake appeared to conform to Michaelis-Menten kinetics with an apparent Km of about 2 millimolar and a Vmax of about 25 micromoles·gram−1·hour−1.

The uptake of glutamine was inhibited by all of the 18 amino acids tested; the mode of inhibition was studied only with proline and was competitive. Eight of the ten amino acids tested at high concentrations appeared to be able to inhibit the mediated uptake of glutamine virtually completely. However, when the inhibitory effect of asparagine was extrapolated to an infinitely high concentration of asparagine, about 24% of the mediated uptake of glutamine remained uninhibited. These results suggest that glutamine is taken up by two (or more) rather unspecific amino acid uptake systems, the minor one having no affinity for asparagine.

Glutamine and alanine could completely inhibit the mediated uptake of 1 millimolar leucine, but about 12% of the mediated uptake appeared to be uninhibitable by asparagine. Furthermore, the ratio of the mediated uptake of glutamine to that of leucine changed from 0.9 to 1.7 between days 1 and 3 of germination. These results give further support for the presence of two unspecific amino acid uptake systems in barley scutella.

  相似文献   

3.
Maltose transport in slices of the maize scutellum was demonstrated despite the presence of an active maltase situated at the cell surface. The maltase could be inhibited or destroyed by treatments (neutral pH during uptake, pretreatment in Tris buffer at pH 7·5, or in 0·01 N HCl) that allowed appreciable rates of maltose uptake to occur. Using Tris- and HCl-treated slices, it was found that at disaccharide concentrations of 50 and 100 mM, maltose and sucrose were taken up at very nearly the same rates. At sugar concentrations below 50 mM, sucrose was taken up at greater rates than maltose. The maltose content of the slices was directly proportional to the maltose concentration of the bathing solution, and about 4 hr were required for equilibration. From this, it is concluded that one way maltose enters the slices is by free or facilitated diffusion. However, endogenous maltose is utilized by the slices at rates that are much too low to account for the net rates of maltose uptake. Although the slices contain a high level of surface maltase activity, only a low level of endogenous maltase activity was found. This probably accounts for the slow utilization of endogenous maltose. Therefore, the existence of a specific maltose transport system is proposed; a system that contains a carrier saturable with maltose, but one that does not release free maltose into the cytoplasm.  相似文献   

4.
Summary Nitrite reductase from corn scutellum-a non-chlorophyllous tissue-can use methyl viologen, benzyl viologen or ferredoxin as electron donor. Little or no reduction occurs with nicotinamide or flavin nucleotides. Activity is inhibited by p-chloromercuribenzoate and by cyanide. Organic chelates, with the exception of bathocuproine disulphonate and bathophenanthroline disulphonate, are not inhibitory. Ammonia is the reaction product. Ion exchange chromatography resolves the nitrite reductase activity into two peaks with apparently represent two forms of the enzyme. Both have a molecular weight of 61–63000 as determined by molecular exclusion chromatography, and a pH optimum of 6.7–6.8. Although their properties are generally similar, they show a marked difference in thermal stability, ionic charge and behaviour during isoelectric focusing. Nitrite reductase is found largely in the soluble fraction although some particulate activity is also obtained. Both forms of the enzyme are present in the soluble and particulate fractions.  相似文献   

5.
Apparent transinhibition of peptide uptake in the scutellum of barley grain   总被引:1,自引:0,他引:1  
The uptake of glycylsarcosine (Gly-Sar) into scutella separated from germinating grains of barley ( Hordeum vulgare L. cv. Himalaya) is inhibited by other peptides; in most cases the inhibition is not purely competitive but of a mixed type (simultaneous increase in the apparent Km and decrease in Vmax) (Sopanen, T. 1979. FEBS Lett. 108: 447–450). The aim of the present experiments was to elucidate the mechanism of the mixed inhibition by studying how peptides already taken up into the cells affect the uptake of Gly-Sar.
When scutella were preincubated in the presence of various peptides, 11 of the 13 peptides tested inhibited the subsequent uptake of Gly-Sar by 10 to 45%. The inhibition, studied in detail with leucylleucine and prolylproline, was due to a decrease in Vmax. The two peptides having no effect were glycylglycine and D-alanyl-L-alanine which are the only peptides known to date acting as purely competitive inhibitors when present together with the substrate Gly-Sar.
Preincubation with leucine, proline and alanine was not inhibitory, although preincubation with the corresponding dipeptides was. This result, together with the demonstration of intact leucylleucine in the scutella after preincubation with leucylleucine, indicates that the inhibition was caused by the intact peptides.
The results support the notion that in the mixed type inhibition the increase in the apparent Km is due to competition for the carrier at the outside of the membrane, while the decrease in Vmax is due to peptides taken up and binding to the carrier at the inside of the membrane.  相似文献   

6.
Summary Experiments were performed to obtain information on: (i) the specific properties of Ca2+ binding and transport in yeast (ii) the relationship between both parameters; (iii) similarities to or differences from other biological systems as measured by the effects of inhibitors; and (iv) the effects of mono and divalent cations, in order to get some insight on the specificity and some characteristics of the mechanism of the transport system for divalent cations in yeast.The results obtained gave some kinetic parameters for a high affinity system involved in the transport of Ca2+ in yeast. These were obtained mainly by considering actual concentrations of Ca2+ in the medium after substracting the amounts bound to the cell. Ak m of 1.9 m and aV max of 1.2 nmol (100 mg·3 min)–1 were calculated.The effects of some inhibitors and other cations on Ca2+ uptake allow one to postulate some independence between binding and transport for this divalent cation.Of the inhibitors tested, only lanthanum seems to be a potent inhibitor of Ca2+ uptake in yeast.The effects of Mg2+ on the uptake of Ca2+ agree with the existence of a single transport system for both divalent cations.The actions of Na+ and K+ on the transport of Ca2+ offer interesting possibilities to study further some of the mechanistic properties of this transport system for divalent cations.  相似文献   

7.
Summary Root parameters of three corn (Zea mays L.) genotypes influencing P and K uptake were investigated in solution culture and field experiments. The data for these parameters were used to simulate P and K uptake by plants grown in the field using the Claassen-Barber model5. Root characteristics for ion influx, maximum rate of influx,Imax; Michaelis-Menten constant,Km; and minimum concentration of solution below which no further net influx occurs,Cmin were determined in solution culture. These kinetic parameters varied 2 to 3 fold among genotypes. Variations among genotypes were different for K than for P.Three corn genotypes were grown in the field and harvested 47, 54 and 68 days after emergence. Yield and root surface per plant increased about 3 fold during this time. At 47 days, 2/3 of the total root surface was in the top soil whereas 3 weeks later, it was less than 50%. Genotypes differed in distribution of roots between the topsoil and subsoil as well as in root surface per unit of shoot.K uptake predicted by the Claassen-Barber model was 2 to 3 times the observed. The overprediction could be related to high root density (length of root per unit soil volume) which indicated that competition between roots occurred that was not considered in the simulation model. The predicted P uptake (y) was correlated (r=0.91) to observed uptake (x) byy=0.98+0.67x, indicating underprediction of P uptake. The presence of root hairs may have been the cause of the underprediction. The calculated contribution of the subsoil to the observed uptake was 10% for K and 1% in the case of P. It was concluded that the plant parameters used to simulate nutrient uptake were rated accurately when allowance was made for root competition and presence of root hairs.Journal Paper No. 7608. Purdue University, Agric. Exp. Station, West Lafayette, IN 47907. Contribution from the Department of Agronomy. This research was supported in part by the Tennessee Valley Authority and the Deutsche Forschungsgemeinschaft.  相似文献   

8.
Multiphasic uptake of phosphate by corn roots   总被引:4,自引:1,他引:3  
Abstract The concentration dependence of phosphate uptake was studied using root sections of corn (Zea mays L. cv. Ganga 5). Detailed and wide-range (57 concentrations in the range 1 μmol m?3-75 mol m?3), precise (average SEM < 2.5%, n= 6) and reproducible (similar patterns in three independent experiments and for 5, 10, 15, 20, 25 and 30°C) data revealed six (or seven) concentration-dependent phases separated by ‘jumps’ or sharp breaks. These transitions were independent of temperature and occurred over relatively narrow concentration ranges (0.0001–0.0004, 0.08–0.31, 1.0–3.5, (7.5–10), 18–20 and 57–59 mol m?3). The intermediate phases obeyed Michaelis-Menten kinetics, whereas sigmoidal kinetics were observed at lower concentrations. Uptake within each of the two highest phases increased more rapidly with increasing external phosphate concentration than predicted from Michaelis-Menten kinetics but also saturated more rapidly. The latter finding is not consistent with free diffusion across the plasmalemma at high external phosphate concentrations. Kinetic models yielding continuous isotherms, e.g. the sum of one or two Michaelis-Menten terms and a diffusion term, cannot account for the data.  相似文献   

9.
Abstract The kinetics of sucrose uptake into maize scutellum slices showed that the uptake mechanism had a saturable component with a Km of l.5mol m?3 sucrose. Nevertheless, uptake rate was constant (zero order) over extended periods of time until the bathing solution was nearly depleted of sucrose. It is concluded that these anomalous uptake kinetics reflect sucrose influx across the plasmalemma because of the following results: (a) Efflux of sucrose into buffer was negligible compared with uptake rate, (b) When slices were incubated in fructose, sucrose was synthesized and there was a net release of sucrose to the bathing solution until a steady-state was reached when influx and efflux were equal in magnitude. After the steady-state was reached, efflux of sucrose from the slices was nearly the same in magnitude as the estimated rate of uptake that would have occurred from bathing solutions initially containing the steady-state sucrose concentration, (c) Exchange of sucrose between bathing solution and slices was negligible compared with uptake rate, (d) Pretreatment of slices with uranyl nitrate abolished sucrose uptake, but uptake rate was re-established in these slices after treatment with HCl (pH 2). Uptake rate was set by the initial sucrose concentration of the bathing solution, and was not influenced by the level of endogenous sucrose or by the rate at which the sucrose concentration of the bathing solution declined. Abrupt increases in sucrose concentration during the uptake period increased the rate of uptake only if the concentration was increased above that at the start of the uptake period. Following abrupt decreases in sucrose concentration, there was a lag of about 30 min before uptake rate decreased greatly. If slices were washed and replaced in a fresh sucrose solution during the uptake period, a new uptake rate was set to correspond to the new initial sucrose concentration. It is suggested that the sucrose carrier has a transport site with a relatively low Km (much below 1.5mol m?3) and that the measured Km (1.5mol m?3) is that of a site that binds sucrose and thereby controls the rate of uptake. The low Km suggested for the transport site would explain the zero order kinetics but a model of the uptake mechanism that includes the control site cannot, as yet, be constructed from the data.  相似文献   

10.
11.
Tryptophan serves as a precursor for the biosynthesis of alkaloids in the ergot fungus, Claviceps purpurea (Fries) Tulasne, and also is believed to act as an inducer of the enzymes necessary for alkaloid production. The characteristics of the transport system responsible for the accumulation of tryptophan in ergot mycelium were investigated, with the goal of clarifying the complex relationships among tryptophan uptake, size of the free intracellular pool of tryptophan, and alkaloid production. The characteristics of tryptophan uptake were studied by pulse feeding radioactively labeled tryptophan to cultures of Claviceps species, strain SD-58, which represented a variety of ages and nutritional states. Tryptophan accumulation in strain SD-58 is mediated by an energy-requiring system which exhibits specificity for neutral aromatic and aliphatic l-amino acids, is pH and temperature dependent, and shows saturation at high substrate concentrations. Tryptophan transport is a function of the intracellular concentration of free tryptophan, the nitrogen deficiency of the mycelium, the rate of growth, and alkaloid production, which were measured in Claviceps strain SD-58 growth in several culture media, some of which promoted alkaloid production and some of which did not. The results indicate that the initial velocity of tryptophan transport is not directly related to alkaloid production.  相似文献   

12.
13.
Zinc uptake by corn as affected by vesicular-arbuscular mycorrhizae   总被引:1,自引:1,他引:0  
Pot-grown mycorrhizal and non-mycorrhizal sweet corn were grown in a low Zn soil. All treatments received a complete nutrient solution with or without Zn. Treatments were harvested sequentially to detemine temporal mycorrhizal effects on: (a) tissue and water soluble Zn and (b) differential uptake of P and Zn. Plants grown with supplemental Zn had greater growth and Zn tissue concentration than those not receiving Zn. With no supplemental Zn, mycorrhizal treatments had greater growth and Zn concentration than non-mycorrhizal treatments. There was no indication of nutrient interaction between Zn and P. Over the range of tissue Zn found, there appeared to be no advantage to water soluble Zn analysis over total Zn in assessing plant Zn status.  相似文献   

14.
15.
16.
Abstract Glutamine uptake in the cyanobiont Nostoc ANTH was energy-dependent and repressed in ammonia-grown cells. l -Methionine- dl -sulphoximine (MSX), a glutamate analogue and an inhibitor of glutamine synthetase (GS), did not affect glutamine uptake whereas azaserine, an inhibitor of glutamate synthase (GOGAT) did, suggesting that GS activity is not necessarily involved in the glutamine uptake system and that increased intracellular glutamine level regulates its own uptake. Repression of glutamine uptake by ammonia did not require de novo protein synthesis but required GS activity, suggesting that ammonia itself was not the repressor signal. The derepression of the glutamine uptake system did not require GS activity but required de novo protein synthesis.  相似文献   

17.
18.
F forms stable complexes with Al at conditions found in the soil. Fluoroaluminate complexes (AlF(x)) have been widely described as effective analogs of inorganic phosphate (Pi) in Pi-binding sites of several proteins. In this work, we explored the possibility that the phytotoxicity of AlF(x) reflects their activity as Pi analogs. For this purpose, (32)P-labeled phosphate uptake by excised roots and plasma membrane H(+)-ATPase activity were investigated in an Al-tolerant variety of maize (Zea mays L. var. dwarf hybrid), either treated or not with AlF(x). In vitro, AlF(x) competitively inhibited the rate of root phosphate uptake as well as the H(+)-ATPase activity. Conversely, pretreatment of seedlings with AlF(x) in vivo promoted no effect on the H(+)-ATPase activity, whereas a biphasic effect on Pi uptake by roots was observed. Although the initial rate of phosphate uptake by roots was inhibited by AlF(x) pretreatment, this situation changed over the following minutes as the rate of uptake increased and a pronounced stimulation in subsequent (32)Pi uptake was observed. This kinetic behavior suggests a reversible and competitive inhibition of the phosphate transporter by fluoroaluminates. The stimulation of root (32)Pi uptake induced by AlF(x) pretreatment was tentatively interpreted as a phosphate starvation response. This report places AlF(3) and AlF(4)(-) among Al-phytotoxic species and suggests a mechanism of action where the accumulation of Pi-mimicking fluoroaluminates in the soil may affect the phosphate absorption by plants. The biochemical, physiological, and environmental significance of these findings is discussed.  相似文献   

19.
Scutella separated from germinating grains of barley (Hordeum vulgare L. cv Himalaya) took up 1 millimolar l-[14C]proline at an initial rate of about 6.5 micromoles gram−1 fresh weight hour−1 (pH 5, 30°C). The uptake had a pH optimum at 5. The bulk of the uptake (93%) was via carrier-mediated active transport. All of the 19 l-amino acids tested at 10 millimolar concentration inhibited the mediated uptake of 1 millimolar proline, the inhibitions varying from 18 to 76%. By studying how large a fraction of the mediated uptake was inhibitable by asparagine, alanine, glutamine, and leucine, the mediated uptake was shown to be due to three components. Two of these are most probably attributable to the two nonspecific uptake systems proposed earlier to act in the uptake of glutamine and leucine. The third component was not inhibited by glutamine, asparagine, or alanine, but was inhibited by unlabeled proline and leucine. The uptake by this system was apparently carrier-mediated active transport. d-Proline inhibited this system as strongly as l-proline. Nine of the 16 l-amino acids tested at 50 millimolar concentrations did not inhibit the uptake of 1 millimolar proline by this system. Valine, leucine, isoleucine, and the basic amino acids were inhibitory, but in spite of this, they did not appear to be taken up by this system. It seems therefore that in addition to two nonspecific amino acid uptake systems the scutella have an uptake system which is specific for proline. It is likely that this proline-specific system accounts for the bulk of proline uptake in a germinating grain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号