首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of betaine as a factor influencing the salt resistance of the respiratory system in resting cells of the moderately halophilic halotolerant bacterium Ba(1) was studied. Betaine accelerated succinate oxidation in cells obtained from low-salt medium, and stimulation of the respiratory rate was stronger the higher the sodium chloride concentration in the assay medium. The stimulatory effect also depended on the ratio of betaine concentration to the amount of bacteria present. Accumulation of labelled betaine by the bacterial cells was demonstrated; like the respiratory stimulation, it was favourably influenced by an increase in the sodium chloride concentration of the medium. In cells harvested from a high-salt medium and washed with 2.0m-sodium chloride, betaine caused no increase in the respiratory rate, nor was the already high salt resistance of the respiratory system further improved by the addition of betaine. When, however, these cells lost their salt resistance as a result of washing in the absence of sodium chloride, betaine was able to restore it to its original level. In contrast with respiration in low-salt-grown bacteria, that in high-salt-grown cells was not affected by betaine, even after they were washed in the absence of sodium chloride, when the sodium chloride concentration was optimum.  相似文献   

2.
Glycine betaine stimulates the growth rate of various bacteria in high osmolarity medium. In our studies, glycine betaine stimulated the growth rate of Escherichia coli K 12 in minimal medium with normal osmolarity at alkaline pH (pH 8.2). Betaine also caused a reduction in the intracellular pools of K+ and low molecular weight thiols in E. coli growing both in medium with high osmolarity and at alkaline pH. These effects of betaine were absent at pH 7.0. In cells growing in high osmolarity medium, 10 mM sodium acetate or 10 M N-ethylmaleimide reduced expression of the osmosensitive gene proU to the same extent as treatment with betaine; however, under these conditions, sodium acetate and N-ethylmaleimide did not stimulate the growth of E. coli. It is proposed that low molecular weight thiols and intracellular pH may participate in the response of E. coli to betaine.  相似文献   

3.
4.
Unlike most Lactobacillus acidophilus strains, a specific strain, L. acidophilus IFO 3532, was found to grow in rich medium containing 1 M sodium acetate, KCl, or NaCl. This strain could also grow with up to 1.8 M NaCl or 3 M nonelectrolytes (fructose, xylose, or sorbitol) added. Thus, this strain was tolerant to osmotic pressures up to 2.8 osM. A search for an intracellular solute which conferred osmoprotection led to the identification of glycine betaine (betaine). Betaine was accumulated to high concentrations in cells growing in MRS medium supplemented with 1 M KCl or NaCl. Uptake of [14C]betaine by L. acidophilus 3532 cells suspended in buffer was stimulated by increasing the medium osmotic pressure with 1 M KCl or NaCl. The accumulated betaine was not metabolized further; transport was relatively specific for betaine and was dependent on an energy source. Other lactobacilli, more osmosensitive than strain 3532, including L. acidophilus strain E4356, L. bulgaricus 8144, and L. delbrueckii 9649, showed lower betaine transport rates in response to an osmotic challenge than L. acidophilus 3532. Experiments with chloramphenicol-treated L. acidophilus 3532 cells indicated that the transport system was not induced but appeared to be activated by an increase in osmotic pressure.  相似文献   

5.
Yersinia enterocolitica is a gram-negative, food-borne pathogen that can grow in 5% NaCl and at refrigerator temperatures. In this report, the compatible solutes (osmolytes) which accumulate intracellularly and confer the observed osmotic tolerance to this pathogen were identified. In minimal medium, glutamate was the only detectable osmolyte that accumulated in osmotically stressed cells. However, when the growth medium was supplemented with glycine betaine, dimethylglycine, or carnitine, the respective osmolyte accumulated intracellularly to high levels and the growth rates of the osmotically stressed cultures improved from 2.4- to 3.5-fold. Chill stress also stimulated the intracellular accumulation of glycine betaine, but the growth rate was only slightly improved by this osmolyte. Both osmotic upshock and temperature downshock stimulated the rate of uptake of [(sup14)C]glycine betaine by more than 30-fold, consistent with other data indicating that the osmolytes are accumulated from the growth medium via transport.  相似文献   

6.
The extremely halophilic actinomycete Actinopolyspora halophila is a rare example of a heterotrophic eubacterium producing betaine from simple carbon sources. A. halophila synthesized remarkably high intracellular concentrations of betaine. The highest betaine concentration, determined at 24% (w/v) NaCl, was 33% of the cellular dry weight. Trehalose was synthesized as a compatible solute, accounting for up to 9.7% of the cellular dry weight. The betaine concentration was shown to increase with increasing NaCl concentration, whereas the trehalose concentration was highest at the lowest NaCl concentration used (15% w/v). A. halophila was capable of accumulating betaine from the medium, while at the same time betaine was also excreted back into the medium by the cells. Along with the de novo synthesis of betaine, A. halophila was able to take up choline from the medium and oxidize it to betaine. Some basic characteristics of the choline oxidation system are described. Choline was oxidized to betaine aldehyde in a reaction in which H2O2 generation and oxygen consumption were coupled. Betaine aldehyde was also oxidized, but with lesser efficiency. In addition, betaine aldehyde was oxidized further to betaine in a reaction in which NAD(P)+ was reduced.  相似文献   

7.
Exposure of Escherichia coli to 0.8 M NaCl caused a rapid and large decrease in colony-forming activity. When such osmotically upshocked cells were exposed to betaine, colony-forming activity was restored. Betaine was able to restore colony-forming activity even when chloramphenicol inhibited protein synthesis. Thus, restoration was not the result of cell turnover. The cells were not killed by exposure to 0.8 M NaCl, because during exposure they accumulated ATP intracellularly. Betaine treatment caused this cellular ATP to decrease to a lower level. This work may provide the foundation for a simple plating procedure to quantitatively detect nonculturable E. coli in ocean beach recreational waters.  相似文献   

8.
Exposure of Escherichia coli to 0.8 M NaCl caused a rapid and large decrease in colony-forming activity. When such osmotically upshocked cells were exposed to betaine, colony-forming activity was restored. Betaine was able to restore colony-forming activity even when chloramphenicol inhibited protein synthesis. Thus, restoration was not the result of cell turnover. The cells were not killed by exposure to 0.8 M NaCl, because during exposure they accumulated ATP intracellularly. Betaine treatment caused this cellular ATP to decrease to a lower level. This work may provide the foundation for a simple plating procedure to quantitatively detect nonculturable E. coli in ocean beach recreational waters.  相似文献   

9.
Betaine is the major oxidation product of [Me-14C] choline produced by rat liver slices. Liver slices from adult rats rapidly oxidize [Me-14C] choline to betaine and the bulk of the betaine produced is recovered in the incubation medium. Considerably more choline is oxidized to betaine than is phosphorylated to phosphorylcholine. The rate of phosphorylation of choline appears to be independent of the rate of choline oxidation. Liver slices from fetal and young rats oxidize choline to betaine at a lower rate than adult liver slices.The ability of mitochondria to oxidize [Me-14C] choline to betaine aldehyde and betaine is considerably lower in fetal liver than in adult liver. The major product with both fetal and adult mitochondria is betaine aldehyde. Choline oxidation by mitochondria begins to increase 1 day prior to birth and increases progressively to adult levels by 18 days. The developmental pattern for choline oxidation is similar to the pattern for succinic dehydrogenase activity.  相似文献   

10.
Metabolic engineering for betaine accumulation in microbes and plants   总被引:1,自引:0,他引:1  
Plants accumulate a variety of osmoprotectants that improve their ability to combat abiotic stresses. Among them, betaine appears to play an important role in conferring resistance to stresses. Betaine is synthesized via either choline oxidation or glycine methylation. An increased betaine level in transgenic plants is one of the potential strategies to generate stress-tolerant crop plants. Here, we showed that an exogenous supply of serine or glycine to a halotolerant cyanobacterium Aphanothece halophytica, which synthesizes betaine from glycine by a three-step methylation, elevated intracellular accumulation of betaine under salt stress. The gene encoding 3-phosphoglycerate dehydrogenase (PGDH), which catalyzes the first step of the phosphorylated pathway of serine biosynthesis, was isolated from A. halophytica. Expression of the Aphanothece PGDH gene in Escherichia coli caused an increase in levels of betaine as well as glycine and serine. Expression of the Aphanothece PGDH gene in Arabidopsis plants, in which the betaine synthetic pathway was introduced via glycine methylation, further increased betaine levels and improved the stress tolerance. These results demonstrate that PGDH enhances the levels of betaine by providing the precursor serine for both choline oxidation and glycine methylation pathways.  相似文献   

11.
The foodborne pathogenStaphylococcus aureus is distinguished by its ability to grow within environments of extremely high osmolarity (e.g., foods with low water activity values). In the present study, we examined the accumulation of intracellular organic solutes withinS. aureus strain ATCC 12600 when cells were grown in a complex medium containing high concentrations of NaCl. Consistent with previous reports [Measures JC (1975) Nature 257:398–400; Koujima I, et al. (1978) Appl Environ Microbiol 35:467–470; and Anderson CB, Witter LD (1982) Appl Environ Microbiol 43:1501–1503], intracellular proline was found to accumulate to high concentrations. However, NMR spectroscopy of cell extracts revealed glycine betaine to be the predominant intracellular organic solute accumulated within cells grown at high osmolarity. In additional experiments, we examined the growth rate ofS. aureus in a defined medium of high osmolarity and found it to be stimulated significantly by the presence of either exogenous proline or glycine betaine. Highest growth rates were obtained when the defined medium was supplemented with glycine betaine.  相似文献   

12.
Methanogenic Archaea are found in a wide range of environments and use several strategies to adjust to changes in extracellular solute concentrations. One methanogenic archaeon, Methanosarcina thermophila TM-1, can adapt to various osmotic conditions by synthesis of alpha-glutamate and a newly discovered compatible solute, Ne-acetyl-beta-lysine, or by accumulation of glycine betaine (betaine) and potassium ions from the environment. Since betaine transport has not been characterized for any of the methanogenic Archaea, we examined the uptake of this solute by M. thermophila TM-1. When cells were grown in mineral salts media containing from 0.1 to 0.8 M NaC1, M. thermophila accumulated betaine in concentrations up to 140 times those of a concentration gradient within 10 min of exposure to the solute. The betaine uptake system consisted of a single, high-affinity transporter with an apparent K3 of 10 microM and an apparent maximum transport velocity of 1.15 nmol/min/mg of protein. The transporter appeared to be specific for betaine, since potential substrates, including glycine, sarcosine, dimethyl glycine, choline, and proline, did not significantly inhibit betaine uptake. M. thermophila TM-1 cells can also regulate the capacity for betaine accumulation, since the rate of betaine transport was reduced in cells pregrown in a high-osmolarity medium when 500 microM betaine was present. Betaine transport appears to be H+ and/or Na+ driven, since betaine transport was inhibited by several types of protonophores and sodium ionophores.  相似文献   

13.
Extreme halophiles synthesize betaine from glycine by methylation   总被引:9,自引:0,他引:9  
Glycine betaine is a compatible solute, which is able to restore and maintain osmotic balance of living cells. It is synthesized and accumulated in response to abiotic stress. Betaine acts also as a methyl group donor and has a number of important applications including its use as a feed additive. The known biosynthetic pathways of betaine are universal and very well characterized. A number of enzymes catalyzing the two-step oxidation of choline to betaine have been isolated. In this work we have studied a novel betaine biosynthetic pathway in two phylogenically distant extreme halophiles, Actinopolyspora halophila and Ectothiorhodospira halochloris. We have identified a three-step series of methylation reactions from glycine to betaine, which is catalyzed by two methyltransferases, glycine sarcosine methyltransferase and sarcosine dimethylglycine methyltransferase, with partially overlapping substrate specificity. The methyltransferases from the two organisms show high sequence homology. E. halochloris methyltransferase genes were successfully expressed in Escherichia coli, and betaine accumulation and improved salt tolerance were demonstrated.  相似文献   

14.
Lactococcus lactis subsp. lactis ML3 contains high pools of proline or betaine when grown under conditions of high osmotic strength. These pools are created by specific transport systems. A high-affinity uptake system for glycine betaine (betaine) with a Km of 1.5 microM is expressed constitutively. The activity of this system is not stimulated by high osmolarities of the growth or assay medium but varies strongly with the medium pH. A low-affinity proline uptake system (Km, > 5 mM) is expressed at high levels only in chemically defined medium (CDM) with high osmolarity. This transport system is also stimulated by high osmolarity. The expression of this proline uptake system is repressed in rich broth with low or high osmolarity and in CDM with low osmolarity. The accumulated proline can be exchanged for betaine. Proline uptake is also effectively inhibited by betaine (Ki of between 50 and 100 microM). The proline transport system therefore probably also transports betaine. The inhibition of proline transport by betaine results in low proline pools in cells grown in high-osmotic-strength, betaine-containing CDM. The energy and pH dependency and the influence of ionophores on the activity of both transport systems suggest that these systems are not proton motive force driven. At low osmolarities, proline uptake is low but significant. This low proline uptake is also inhibited by betaine, although to a lesser extent than in cells grown in high-osmotic-strength CDM. These data indicate that proline uptake in L. lactis is enzyme mediated and is not dependent on passive diffusion, as was previously believed.  相似文献   

15.
Osmoregulation in Rhodobacter sphaeroides.   总被引:5,自引:5,他引:0       下载免费PDF全文
Betaine (N,N,N-trimethylglycine) functioned most effectively as an osmoprotectant in osmotically stressed Rhodobacter sphaeroides cells during aerobic growth in the dark and during anaerobic growth in the light. The presence of the amino acids L-glutamate, L-alanine, or L-proline in the growth medium did not result in a significant increase in the growth rate at increased osmotic strengths. The addition of choline to the medium stimulated growth at increased osmolarities but only under aerobic conditions. Under these conditions choline was converted via an oxygen-dependent pathway to betaine, which was not further metabolized. The initial rates of choline uptake by cells grown in media with low and high osmolarities were measured over a wide range of concentrations (1.9 microM to 2.0 mM). Only one kinetically distinguishable choline transport system could be detected. Kt values of 2.4 and 3.0 microM and maximal rates of choline uptake (Vmax) of 5.4 and 4.2 nmol of choline/min.mg of protein were found in cells grown in the minimal medium without or with 0.3 M NaCl, respectively. Choline transport was not inhibited by a 25-fold excess of L-proline or betaine. Only one kinetically distinguishable betaine transport system was found in cells grown in the low-osmolarity minimal medium as well as in a high-osmolarity medium containing 0.3 M NaCl. In cells grown and assayed in the absence of NaCl, betaine transport occurred with a Kt of 15.1 microM and a Vmax of 3.2 nmol/min . mg of protein, whereas in cells that were grown and assayed in the presence of 0.3 M NaCl, the corresponding values were 18.2 microM and 9.2 nmol of betaine/min . mg of protein. This system was also able to transport L-proline, but with a lower affinity than that for betaine. The addition of choline of betaine to the growth medium did not result in the induction of additional transport systems.  相似文献   

16.
The aim of this study was to unravel the identity of compatible solutes accumulated by Lactobacillus plantarum subjected to osmotic stress. Betaine was accumulated simulataneously with a novel compatible solute identified as carnitine, both present in the complex medium applied in this study. Beef extract provided the main source of carnitine in the medium. Both carnitine and betaine were accumulated to maximum concentrations of 248 and 231 mol.g dry weight-1, respectively. A defined medium was devised devoid of carnitine. Addition of 0.5 mM carnitine to this medium increased the growth rate from 0.1 h-1 to 0.2 h-1 in media with 0.4 M sodium chloride. Also, carnitine made the organism more tolerant to sodium chloride. Growth occurred even when the sodium chloride concentration was raised from 0.5 M to 1.0 M. Quaternary compounds resembling the structure of carnitine and betaine enhanced the growth yield as well. -Butyrobetaine and succinylcholine restored the growth yield up to respectively 91 and 96% compared to non-stressed cells.Abbreviation MRS De Man, Rogosa and Sharpe (De Man et al. 1960)  相似文献   

17.
Responses to hyperosmotic shock in the lysine-producing mutant Brevibacterium lactofermentum NRRL B-11470 and the wild-type Corynebacterium glutamicum ATCC 13032 were studied in batch and continuous culture. The strains were chosen because they are used in commercial production of lysine and glutamic acid. Both strains, as well as the wild type of B. lactofermentum, were able to grow at high osmotic stress, at least 3 osmol/kg, from NaCl, sucrose, glutamic acid or lysine. The specific growth rate decreased in a nearly linear fashion with increasing stress. However, low stress from glutamic acid stimulated growth, especially in the wild type of B. lactofermentum. Both cell and cytoplasmic volume decreased spontaneously after hyperosmotic shock and no plasmolysis was observed. Addition of betaine stimulated the subsequent increase in the volumes. The volumes decreased linearly with increasing stress, except at low glutamic acid stress, which caused a volume increase. The respiration rate, measured as CO2 evolution, decreased immediately after shock, but increased again and stabilized within 2 h. Betaine stimulated the respiration recovery rate.  相似文献   

18.
Detection of the osmoregulator betaine in methanogens.   总被引:11,自引:3,他引:8       下载免费PDF全文
Trimethyl glycine (glycine betaine) was detected by 13C nuclear magnetic resonance spectroscopy at high intracellular concentrations in several methanogens (Methanogenium cariaci, "Methanogenium anulus" AN9, Methanohalophilus zhilinae, Methanohalophilus mahii, and Methanococcus voltae) grown on marine media containing yeast extract. 13C labeling studies with Methanogenium cariaci suggested that the betaine which accumulated inside the cells was not synthesized de novo but was transported in from the medium. Proof of such a transport system was provided by growing Methanogenium cariaci on yeast-free medium supplemented with betaine. Under these conditions, betaine was the dominant osmoregulator.  相似文献   

19.
Detection of the osmoregulator betaine in methanogens   总被引:3,自引:0,他引:3  
Trimethyl glycine (glycine betaine) was detected by 13C nuclear magnetic resonance spectroscopy at high intracellular concentrations in several methanogens (Methanogenium cariaci, "Methanogenium anulus" AN9, Methanohalophilus zhilinae, Methanohalophilus mahii, and Methanococcus voltae) grown on marine media containing yeast extract. 13C labeling studies with Methanogenium cariaci suggested that the betaine which accumulated inside the cells was not synthesized de novo but was transported in from the medium. Proof of such a transport system was provided by growing Methanogenium cariaci on yeast-free medium supplemented with betaine. Under these conditions, betaine was the dominant osmoregulator.  相似文献   

20.
Summary Glycine betaine is readily accumulated in wheat (Triticum aestivum cv. Inia) shoots during periods of salinity stress. The ability of the plant to utilize betaine as a source of nitrogen remains unresolved. We, therefore, conducted solution culture experiments in a greenhouse to test the hypothesis that betaine is degraded in wheat shoots under conditions of severe nitrogen deficiency. Betaine concentrations increased in continuously salt stressed plants for only 17 days after salinity was imposed. After this period, concentrations (dry weight basis) decreased steadily until plants died 32 days later. Decreases in betaine concentration were also observed in treatments where salinity stress was removed. The rate of decrease in concentration was greatest in the N-free treatment. These decreases in betaine concentration were the result of dilution by plant growth. Betaine contents (mol shoot–1) remained unchanged after removal of substrate nitrate. Therefore our results support the hypothesis that betaine is a stable end product of metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号