首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The mutagenic activity of the tsA239 mutant of SV40 which synthetizes a defective T antigen at 40°C was investigated in Chinese hamster cells under permissive and nonpermissive temperature. At 33°C the virus increased the yield of 6-mercaptopurine-resistant colonies after 2 days expression time by a factor of 1.6–4 as compared with the control and raised the frequency of aberrant metaphases after the same time by a factor of 1.9–3.4.In the same experiments, with the same initially infected population of Chinese hamster cells, at 40°C tsA SV40 did not induce either gene mutations or chromosome aberrations at the same early stage after infection. Presumably the activity of the A gene of SV40 is necessary not only for the transforming but also for the mutagenic effect of the virus.Abbreviations SV40 Simian virus 40 - BAV3 bovine adenovirus 3 - 6MP 6-mercaptopurine  相似文献   

2.
Chinese hamster embryo cells transformed with the tsA 58 mutant of Simian virus 40 express the transformed phenotype at the permissive temperature (33 degrees C or 37 degrees C) and a "normal" phenotype at the nonpermissive temperature (40.5 degrees C). Immunofluorescence and immunoprecipitation of T antigens demonstrated that the "T" antigen (100 K) has an increase rate of synthesis and degradation at 40.5 degrees C. However, the cells continue to replicate at the nonpermissive temperature when assayed by flow cytometry and autoradiography. This DNA synthesis was cellular, not viral, and not owing to an increase in DNA repair. When the cell cycle distributions of G1, S, and G2 + M were assayed by the fraction labeled mitoses method, no differences were evident at the permissive and nonpermissive temperature; however, the doubling time was lengthened at 40.5 degrees C (13 hours vs. 100 hours). These results suggest that at 40.5 degrees C, the tsA transformed cells are cycling and dying. However, if the transformed cells are seeded onto monolayers of normal Chinese hamster cells at 40.5 degrees C, the cells are growth arrested when measured by growth assays, flow cytometry, autoradiography, and immunofluorescence for T antigen. Therefore, growth arrest can be obtained in tsA 58 transformed Chinese hamster cells when cocultured with normal Chinese hamster cells.  相似文献   

3.
The extent of cell-cycle delay and the frequency of aberrant metaphases induced by bleomycin (BLM) and X-rays have been compared at doses which produce similar frequencies of chromosome aberrations by the 2 clastogenic agents (BLM, 40 micrograms/ml and X-rays, 2 Gy) in muntjac lymphocytes. The frequency of aberrant metaphases was low in BLM-treated cells; however, the number of aberrations per metaphase was higher than in cells exposed to X-rays. Thus in contrast to their uniform sensitivity to X-rays, the lymphocytes showed differential sensitivity to BLM. This might be due to differences among the cells in their uptake of BLM and/or its action on the nuclear membrane-DNA complex. In spite of the total number of chromosome aberrations being similar to that induced by X-rays, BLM did not induce a significant delay in cell-cycle progression as observed in the case of X-rays. A possible explanation could be that the DNA damages being limited to fewer cells than in the case of X-irradiation, the BLM-treated cultures had more normal cells allowing faster progression and/or unlike X-rays BLM may not be causing other cellular damages in addition to DNA breaks.  相似文献   

4.
The influence of elevated temperatures (38-41 degrees C) on chromosomes of human lymphocytes on different phases of the cell cycle was studied. A high thermosensitivity of chromosomes was demonstrated during (S + G2)-phases of the cell cycle. There was a significant increase in the number of aberrant cells at t greater than 38.5%. The main types of chromosome aberrations were chromatid and chromosome deletions. Cells with 3-5 aberrations and induction of chromosome aberrations due to breaks in the centromere region were noticed at high temperatures (40-41 degrees).  相似文献   

5.
We analyzed spontaneous chromosome lesions in peripheral lymphocytes cultured from Hodgkin's lymphoma (HL) patients before and after cytostatic chemotherapy. The mean aberration frequency was significantly higher in HL patients after chemotherapy (7.20+/-0.58 per 100 metaphases) than in non-treated HL patients (4.80+/-0.54), and in non-treated patients than in healthy subjects (2.12+/-0.13). In lymphocytes of HL patients, who received chemotherapy, we found, in addition to ordinary aberrant cells, a large number of multiaberrant (or rogue) cells, i.e. metaphases carrying multiple (at least four) chromosome-type exchange aberrations. Rogue cells were found in 15 out of 18 chemotherapeutically treated HL patients (in total, 60 rogue cells per 5,568 scored cells), whereas in 30 non-treated patients only 1 rogue cell was found (per 4,988 scored cells). No correlation was found between the yield of rogue cells and the aberration frequency in ordinary aberrant cells. Aberration spectra (ratios of chromatid- to chromosome-type aberrations and of breaks to exchanges) were essentially different in ordinary aberrant and multiaberrant cells. These data, as well as analysis of cellular distributions of aberrations, implied independent induction of chromosome damage in ordinary aberrant and rogue cells. Analysis of aberration patterns in diploid and polyploid rogue metaphases belonging to the first, second, and third in vitro division indicated that rogue cells could be formed both in vivo and in vitro, and could survive at least two rounds of in vitro replication, given blocked chromosome segregation. These results suggested that formation of rogue cells, unlike ordinary aberrant cells, was triggered by events other than direct DNA and/or chromosome lesions. A hypothesis regarding disrupted apoptosis as a candidate mechanism for rogue cell formation seems to be most suitable for interpretation of our data. Cultured lymphocytes of chemotherapeutically treated HL patients may represent a model system for further examination of the multiaberrancy phenomenon.  相似文献   

6.
Chromosome damage induced by three antineoplastic drugs -- ftuorafur (Ft), 5-fluorouracil (5-FU) and 5-fluorodeoxyuridine (FUdR) hase been studied in Djungarian hamsters cell line after 24 hours exposition with these agents before the fixation. Ft at a dose of 10 micron/ml induced aberrations in 56.7% of metaphases. 60.0% of aberrant metaphases were obtained in experiments with 0.1 micron/ml of 5 FU. FUdr at the same dose induced 24.0% of aberrant metaphases. The high frequency of chromatid breaks and gaps was typical for the mutagenic action of these fluorinated pyrimidines. The addition of Ft or 5-FU to the cell cultures 1--12 hours before fixation did not produce any significant chrosome damage, while further exposition with the drugs for 15--24 hours caused breaks in more than 50% of metaphases. Thymidine at a concentration of 1.0 micron/ml suppressed the chromosome breaking effect of Ft and 5-FU. The results obtained are in accordance with the idea that fluorodeoxyruidinemonophosphate is the ultimate mutagen for both Ft and 5-FU and that the aberrations observed are due to the lack of thymidine nucelotides caused by the former agents while DNA replication.  相似文献   

7.
Integration of DNA of a temperature-sensitive SV40 mutant (tsA239) into the cell genome was studied. The viral A gene (the oncogene) encodes the tumour T antigen which is ts in the mutant and is devoid of mutagenic and transforming activity under non-permissive conditions (40 degrees C). Clones of Chinese hamster cells infected by tsA239 mutant were analysed. Those infected by wild-type SV40 served as controls. As shown by dot-hybridization, SV40 DNA was detected in cells of 14 out of 18 clones infected by tsA mutant and incubated at 40.5 degrees C, and in all 20 clones infected by tsA mutant and incubated under permissive conditions (33 degrees C), the difference between the two groups being insignificant (p greater than 0.05). By means of blot-hybridization it was established that viral DNA was integrated into the cell genome of all 12 clones analysed, belonging to the three experimental series: infection by tsA mutant, incubation at 40.5 and 33 degrees C, infection by wt SV40, incubation at 40.5 degrees C. The number of integration sites ranged from one to four in different clones. Integration of SV40 DNA in tandems was observed. The data presented allow to conclude that integration per se does not play a crucial role in determining the mutagenic and transforming effect of the virus. Obviously, what matters is the activity of viral oncogene product - the T antigen.  相似文献   

8.
The properties of a naturally occurring temperature-sensitive (ts) mutant of human adenovirus type 7 (Ad7) were studied. Mutant Ad7 (19), or E46-, was the nonhybrid adenovirus component derived from the defective simian virus 40 (SV40)-Ad7 hybrid (PARA). Growth of the mutant was restricted at 40.5 degrees C, and the ratios of virus yields in KB cells at 40.5 and 33 degrees C were 10(-2) to 10(-3). Viral DNA synthesis and the synthesis of adenovirus-specific antigens (tumor, capsid, hexon, and penton antigens) appeared normal at the restrictive temperature. The assembly of virus particles was aberrant, as determined by thin-section of infected cells. The infectivity of mutant virions was heat labile at 50 degrees C, suggesting a ts defect in a structural component of the viron. Analysis by polyacrylamide gel electrophoresis of [35S]methionine-labeled polypeptides synthesized in mutant-infected cells suggested that at least the major virion polypeptides were synthesized at the restrictive temperature. A lack of inhibition of host protein synthesis late in mutant infections, as compared with wild-type (WT) infections at both the permissive and nonpermissive temperatures, made quantitation of infected-cell polypeptides difficult. Analysis of the assembly of capsomeres from cytoplasmic extracts of infected cells on sucrose gradients and by non-dissociating polyacrylamide gel electrophoresis suggested that hexon capsomeres were made at 40.5 degrees C. The hexon capsomeres made by the mutant at either 33 or 40.5 degrees C displayed a decreased migration in the non-dissociating gels compared with the WT hexon capsomeres. The molecular weights of the mutant and WT hexon polypeptides were identical. These results suggest that the ts lesion of this group B human Ad7 mutant may be reflected in altered hexons. The mutant Ad7 interfered with the replication of adenovirus types 2 and 21 at the elevated temperature.  相似文献   

9.
Summary The G-band pattern in 445 metaphases obtained seven weeks after irradiation (600 rad gamma-ray) was analysed. Approximately 37% of these cells had one or more structural aberrations. The majority of the aberrant events was reciprocal translocation followed by inversion and deletion in the proportion of 9:1:1 respectively. Statistical analyses (Chi-square tests) on the distribution of breakpoints among chromosomes showed an excess number of breaks in chromosomes 1,7,and 12. Chromosomes 1 and 12 were particularly involved in cells carrying multiple aberrations while chromosome 7 was preferentially involved in deletion. Within chromosomes a significantly large number of breaks were located in(a) the light bands and (b) the terminal segments. The significance of these findings is discussed.  相似文献   

10.
To identify specific cellular factors which could be required during the synthesis of retroviral DNA, we have studied the replication of murine leukemia virus in mouse cells temperature sensitive for cell DNA synthesis (M. L. Slater and H. L. Ozer, Cell 7:289-295, 1976) and in several of their revertants. This mutation has previously been mapped on the X chromosome. We found that a short incubation of mutant cells at a nonpermissive temperature (39 degrees C) during the early part of the virus cycle (between 0- to 20-h postinfection) greatly inhibited virus production. This effect was not observed in revertant or wild-type cells. Molecular studies by the Southern transfer procedure of the unintegrated viral DNA synthesized in these cells at a permissive (33 degrees C) or nonpermissive temperature revealed that the levels of linear double-stranded viral DNA (8.8 kilobase pairs) were nearly identical in mutant or revertant cells incubated at 33 or 39 degrees C. However, the levels of two species of supercoiled viral DNA (with one or two long terminal repeats) were significantly lower in mutant cells incubated at 39 degrees C than in mutant cells incubated at 33 degrees C or in revertant cells incubated at 39 degrees C. Pulse-chase experiments showed that linear viral DNA made at 39 degrees C could not be converted into supercoiled viral DNA in mutant cells after a shift down to 33 degrees C. In contrast, such conversion was observed in revertant cells. Restriction endonuclease analysis did not detect differences in the structure of linear viral DNA made at 39 degrees C in mutant cells as compared to linear viral DNA isolated from the same cells at 33 degrees C. However, linear viral DNA made at 39 degrees C in mutant cells was poorly infectious in transfection assays. Taken together, these results strongly suggest that this X-linked gene, affecting mouse cell DNA synthesis, is operating in the early phase of murine leukemia virus replication. It seems to affect the level of production of unintegrated linear viral DNA only slightly while greatly reducing the infectivity of these molecules. In contrast, the accumulation of supercoiled viral DNA and subsequent progeny virus production are greatly reduced. Our pulse-chase experiments suggest that the apparent, but not yet identified, defect in linear viral DNA molecules might be responsible for their subsequent impaired circularization.  相似文献   

11.
Restriction enzymes can be electroporated into mammalian cells, and the induced DNA double-strand breaks can lead to aberrations in metaphase chromosomes. Chinese hamster ovary cells were electroporated with PstI, which generates 3' cohesive-end breaks, PvuII, which generates blunt-end breaks, or XbaI, which generates 5' cohesive-end breaks. Although all three restriction enzymes induced similar numbers of aberrant metaphase cells, PvuII was dramatically more effective at inducing both exchange-type and deletion-type chromosome aberrations. Our cytogenetic studies also indicated that enzymes are active within cells for only a short time. We used pulsed-field gel electrophoresis to investigate (i) how long it takes for enzymes to cleave DNA after electroporation into cells, (ii) how long enzymes are active in the cells, and (iii) how the DNA double-strand breaks induced are related to the aberrations observed in metaphase chromosomes. At the same concentrations used in the cytogenetic studies, all enzymes were active within 10 min of electroporation. PstI and PvuII showed a distinct peak in break formation at 20 min, whereas XbaI showed a gradual increase in break frequency over time. Another increase in the number of breaks observed with all three enzymes at 2 and 3 h after electroporation was probably due to nonspecific DNA degradation in a subpopulation of enzyme-damaged cells that lysed after enzyme exposure. Break frequency and chromosome aberration frequency were inversely related: The blunt-end cutter PvuII gave rise to the most aberrations but the fewest breaks, suggesting that it is the type of break rather than the break frequency that is important for chromosome aberration formation.  相似文献   

12.
The histone phosphorylations of temperature-sensitive mutant cells (tsBN2) were investigated during the induction of premature chromosome condensation (PCC). At the permissive temperature (33.5 degrees C), the histones of the cells were phosphorylated typically as in any other mammalian cell. However, at the nonpermissive temperature (40.5 degrees C), both histone H1 and H3 were phosphorylated extensively as in mitotic cells, and the increase in these phosphorylations throughout S to G2 phase was closely correlated to the frequency of cells showing PCC. The pattern of H1 subtype phosphorylations was quite similar, and the sites of H1 phosphorylation from PCC were the same as those from mitotic cells. Although the degree of phosphorylation was low, H1 and H3 phosphorylations were observed even in G1 phase at the nonpermissive temperature. The effects of metabolic inhibitors on the induction of PCC were parallel in H1 and H3 phosphorylations; actinomycin D failed to inhibit either PCC induction or these phosphorylations, whereas cyclohexamide did, completely inhibiting H3 phosphorylation.  相似文献   

13.
PURPOSE: The present study aimed at investigating if 2'-2' difluorodeoxycytidine (dFdC) radioenhancement was mediated by an effect on induction and/or repair of radiation-induced DNA DSBs and chromosome aberrations in cells with different intrinsic radiosensitivity. METHODS: Confluent human head and neck squamous cell carcinoma cell lines designated SCC61 and SQD9 were treated with 5 microM dFdC for 3 or 24 h prior to irradiation. DNA DSBs induction and repair were analyzed by PFGE. Radiation-induced chromosome aberrations were examined with a FISH technique. RESULTS: In both cell lines, dFdC did not modify radiation-induced DNA DSBs in a dose range between 0 and 40 Gy. After a single dose of 40 Gy, dFdC affected neither the kinetic of repair nor the residual amount of DNA DSBs up to 4 h after irradiation. Whereas dFdC did not increase the induction of chromosome aberrations, after a single dose of 5 Gy, the percentage of aberrant cells and the number of aberrations per aberrant cells were significantly higher in combination with dFdC. CONCLUSION: Our data suggest that under experimental conditions yielding substantial radioenhancement, dFdC decreases the repair of genomic lesions inducing secondary chromosome breaks but has no effect on DNA DSBs repair as measured by PFGE.  相似文献   

14.
In chick-embryo fibroblasts infected with the Schmidt-Ruppin strain of Rous sarcoma virus, subgroup A (wild type), or with a thermosensitive mutant of this virus, T5, the rates of mitochondrial DNA synthesis differ in cells that exhibit normal and malignant phenotypes. In wild type virus-infected cells grown at 36 or 41 degrees C, morphological transformation is expressed, the rate of 2-deoxy-D-[3H]glucose uptake is stimulated, and mitochondrial DNA synthesis in vivo is stimulated three- to fivefold over that in uninfected cells. In T5-infected cells these changes occur only at the permissive temperature (36 degrees C); a shift to the nonpermissive temperature (41 degrees C) causes the reversal of these effects, and the specific activity of purified mitochondrial DNA is characteristic of that from uninfected cells. In contrast, the specific activities of nuclear DNA purified from cells maximally transformed under the permissive conditions do not differ between wild type-infected and uninfected with the T5 virus. In parallel experiments with isolated mitochondria, the rate of mtDNA synthesis in vitro is again greater in mitochondria isolated from transformed cells. In addition, mitochondrial DNA synthesis in vitro in mitochondria from nontransformed and virus-transformed cells exhibits differential sensitivity to inhibition by mercaptoethanol. Furthermore, the ntDNAP polymerase activity in mitochondrial extracts prepared from cells with transformed phenotypes is about sevenfold higher than in extracts from cells with nontransformed phenotypes.  相似文献   

15.
Fish subjected to 350 R, 660 R and 990 R of X-radiation showed chromosomal aberrations such as chromatid breaks and gaps, and chromatid exchanges between several chromosomes. The frequency of aberrations/metaphase increased with radiation dosage. Likewise, the percentage of aberrant cells increased with increased irradiation. The countable metaphases fish was lower for higher doses of radiation. At lower doses single chromatid breaks accounted for most of the aberrations whereas complex aberrations involving the breakage and exchange of fragments between several chromosomes were more frequent in fish subjected to 990 R. Gill tissue yielded three times as many countable metaphases as did spleen tissue.  相似文献   

16.
To determine the fate of chromosome aberrations induced primarily by clastogenic chemicals, aberrations of chromosome 9 in cultured human peripheral blood lymphocytes were analyzed after exposure to mitomycin C (MMC) at G(0) phase. Chromosome 9 painting by fluorescence in situ hybridization revealed that the translocation of 9p or 9q to another chromosome and the centric fragment representing the entire length of 9p were characteristically generated from chromatid-type aberrations involving the centromeric region of chromosome 9. These changes were not observed at 48 h after culture initiation, but persistently appeared at later stages (72-120 h postinitiation). Induction of centric fragments of 9p and micronuclei without the alpha satellite DNA of chromosome 9 suggested that most of the breaks were induced near the alpha satellite DNA locus on 9q. Modified patterns of chromosome 9 aberrations were also observed, being related to the copy number of the short or long arm of the chromosome. Such unbalanced karyotypes could remain in the lymphocyte genome over further cell divisions for at least 120 h after culture initiation, indicating that these aberrant cells can survive and that they could pose a health risk.  相似文献   

17.
We have constructed interspecific somatic cell hybrids between a temperature-sensitive (ts) mutant cell line of mouse FM3A cells, ts85, that has a heat-labile ubiquitin-activating enzyme (E1) and a human diploid fibroblast cell line, IMR-90. A hybrid clone that could grow stably at a nonpermissive temperature (39 degrees C) was obtained. Segregation of the hybrid cells at a permissive temperature (33 degrees C) gave rise to temperature-sensitive clones. The electrophoresis of extracted histones and karyotype analysis of the segregants revealed a close correlation of the ability to grow at 39 degrees C, the presence of uH2A (ubiquitin-H2A semihistone) at 39 degrees C, and the presence of the human X chromosome. One of the hybrid clones that could grow at the nonpermissive temperature contained the X chromosome as the only human chromosome. The sodium dodecyl sulfate-polyacrylamide gel electrophoretic pattern of affinity-purified E1 showed that this hybrid clone contained both human and mouse type E1. Thus we conclude that the functional gene for human E1 is located on the X chromosome.  相似文献   

18.
The total protein mass co-isolating with the nuclear matrix or nucleoid from Chinese hamster ovary (CHO) cells was observed to increase in heated cells as a function of increasing exposure temperature between 43 degrees C and 45 degrees C or of exposure time at any temperature. The sedimentation distance of the CHO cell nucleoid in sucrose gradients increased with increasing exposure time at 45 degrees C. Both these nuclear alterations correlated in a log-linear manner with heat-induced inhibition of DNA strand break repair. A two-fold threshold increase in nuclear matrix protein mass preceded any substantial inhibition of repair of DNA single-strand breaks. When preheated cells (45 degrees C for 15 min) were incubated at 37 degrees C the nuclear matrix protein mass and nucleoid sedimentation recovered with a half-time of about 5 h, while DNA single-strand-break repair recovered with a half-time of about 2 h. When preheated cells were placed at 41 degrees C (step-down heating; SDH) a further increase was observed in the nuclear matrix protein mass and the half-time of DNA strand break repair, while nucleoid sedimentation recovered toward control values. These results implicate alterations in the protein mass of the nuclear matrix in heat-induced inhibition of repair of DNA single-strand breaks.  相似文献   

19.
A temperature-sensitive Syrian hamster mutant cell line, ts-745, exhibiting novel mitotic events has been isolated. The cells show normal growth and mitosis at 33 degrees C, the permissive temperature. At the nonpermissive temperature of 39 degrees C, mitotic progression becomes aberrant. Metaphase cells and those cells still able to form a metaphase configuration continue through and complete normal cell division. However, cells exposed to 39 degrees C for longer than 15 min can not form a normal metaphase spindle. Instead, the chromosomes are distributed in a spherical shell, with microtubules (MT) radiating to the chromosomes from four closely associated centrioles near the center of the cell. The cells progress from the spherical monopolar state to other monopolar orientations conical in appearance with four centrioles in the apex region. Organized chromosome movement is present, from the spherical shell state to the asymmetrical orientations. Chromosomes remain in the metaphase configuration without chromatid separation. Prometaphase chromosome congression appears normal, as the chromosomes and MT form a stable monopolar spindle, but bipolar spindle formation is apparently blocked in a premetaphase state. When returned from 39 degrees to 33 degrees C, the defective phenotype is readily reversible. At 39 degrees C, the mitotic abnormality lasts 3-5 h, followed by reformation of a single nucleus and cell flattening in an interphase- like state. Subsequent cell cycle events appear to occur, as the cells duplicate chromosomes and initiate a second round of abnormal mitosis. Cell cycle traversion continues for at least 5 d in some cells despite abnormal mitosis resulting in cells accumulating several hundred chromosomes.  相似文献   

20.
The induction of chromosomal aberrations in rat pleural mesothelial cells (RPMC) following in vitro treatment with chrysotile fibres has been demonstrated. The production of chromosomal aberrations was also observed after treatment of the cells with benzo-3,4-pyrene (BP). The yield of abnormal metaphases was dose-dependent and reached 58% at a BP dose of 2 micrograms/ml. Chrysotile fibres at 7 micrograms/ml induced 21% abnormal metaphases and the frequency decreased with further increases in fibre concentration. Their decline is possibly related to a lethal effect. Chrysotile-induced chromosomal aberrations were primarily of the chromatid type and included breaks and fragments. BP induced chromosome exchanges which were not seen following chrysotile treatment. Minutes and double minutes were detected in BP-treated RPMC and occasionally found after chrysotile application. These results confirm that chrysotile fibres are clastogenic for some cultured cells and demonstrate that the fibres induce chromosome damage in target RPMC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号