首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coupling of photosynthetic reaction centers (RCs) with inorganic surfaces is attractive for the identification of the mechanisms of interprotein electron transfer (ET) and for possible applications in construction of photo- and chemosensors. Here we show that RCs from Rhodobacter sphaeroides can be immobilized on gold surfaces with the RC primary donor looking towards the substrate by using a genetically engineered poly-histidine tag (His7) at the C-terminal end of the M-subunit and a Ni---NTA terminated self-assembled monolayer (SAM). In the presence of an electron acceptor, ubiquinone-10, illumination of this RC electrode generates a cathodic photocurrent. The action spectrum of the photocurrent coincides with the absorption spectrum of RC and the photocurrent decreases in response to the herbicide, atrazine, confirming that the RC is the primary source of the photoresponse. Disruption of the Ni---NTA---RC bond by imidazole leads to about 80% reduction of the photocurrent indicating that most of the photoactive protein is specifically bound to the electrode through the linker.  相似文献   

2.
We address a challenge in the engineering of proteins to redirect electron transfer pathways, using the bacterial photosynthetic reaction centre (RC) pigment–protein complex. Direct electron transfer is shown to occur from the QA quinone of the Rhodobacter sphaeroides RC containing a truncated H protein and bound on the quinone side to a gold electrode. In previous reports of binding to the quinone side of the RC, electron transfer has relied on the use of a soluble mediator between the RC and an electrode, in part because the probability of QB quinone reduction is much greater than that of direct electron transfer through the large cytoplasmic domain of the H subunit, presenting a?~?25 Å barrier. A series of C-terminal truncations of the H subunit were created to expose the quinone region of the RC L and M proteins, and all truncated RC H mutants assembled in vivo. The 45M mutant was designed to contain only the N-terminal 45 amino acid residues of the H subunit including the membrane-spanning α-helix; the mutant RC was stable when purified using the detergent N-dodecyl-β-d-maltoside, contained a near-native ratio of bacteriochlorophylls to bacteriopheophytins, and showed a charge-separated state of \({{\text{P}}^{\text{+}}}{{\text{Q}}_{\text{A}}^-}\). The 45M-M229 mutant RC had a Cys residue introduced in the vicinity of the QA quinone on the newly exposed protein surface for electrode attachment, decreasing the distance between the quinone and electrode to ~?12 Å. Steady-state photocurrents of up to around 200 nA/cm2 were generated in the presence of 20 mM hydroquinone as the electron donor to the RC. This novel configuration yielded photocurrents orders of magnitude greater than previous reports of electron transfer from the quinone region of RCs bound in this orientation to an electrode.  相似文献   

3.
The glucose oxidase (GOD) is entrapped in the composite of carbon nanotubes/chitosan and direct electron transfer reaction between GOD and electrode takes place. The electron transfer rate of GOD is greatly enhanced to 7.73 s(-1) in the system, which is more than one-fold higher than that of flavin adenine dinucleotide adsorbed on the carbon nanotubes (3.1 s(-1)). This maybe results from the conformational change of GOD in the microenvironment enabling the accessibility of active site for GOD to the electrode. Additionally, the bioactivity of GOD modified in the composite on electrode surface is kept. So as-prepared electrode can be used as a glucose biosensor exhibiting higher sensitivity (0.5 microA mM(-1)) and better stability. The facile procedure of immobilizing GOD will promote the developments of electrochemical research for protein, biosensors and other bioelectrochemical devices.  相似文献   

4.
The photosynthetic reaction center (RC) composite film was fabricated by self-assembled monolayers (SAMs) on the Au electrode with two different bifunctional reagents, 4-aminothiophenol (ATP) and 2-mercaptoethylamine (MEA), respectively. The square wave voltametry (SWV), bulk electrolysis and photocurrent test were employed for characterizing the composite film. The dramatic different electrochemical characteristics were observed for the two types of films, which strongly suggested an orientational difference for RC arising from the structural difference between the two bifunctional reagents. For RC-MEA film, three redox peaks which implying electron transfer (ET) between the primary donor (P) and the bacteriopheophytin (Bphe) were observed. While for RC-ATP film, two redox peaks implying ET between the nonheme iron and the primary quinone (Q(A)) were observed. The ET behavior driven by electric field also supported the result that the RC could be linked to the electrode at different sites. The site-specific immobilization approach reported here supplies a method to differentiate the protein orientation.  相似文献   

5.
Prosperity of information on the reactions of redox-active sites in proteins can be attained by voltammetric studies in which the protein sample is located on a suitable surface. This work reports the presentation of myoglobin/nickel oxide nanoparticles/glassy carbon (Mb/NiO NPs/GC) electrode, ready by electrochemical deposition of the NiO NPs on glassy carbon electrode and myoglobin immobilization on their surfaces by the potential cycling method. Images of electrodeposited NiO NPs on the surface of glassy carbon electrode were obtained by scanning electron microscopy (SEM) and atomic force microscopy (AFM). A pair of well-defined redox peaks for Mb(Fe(III)-Fe(II)) was obtained at the prepared electrode by direct electron transfer between the protein and nanoparticles. Electrochemical parameters of immobilized myoglobin such as formal potential (E(0')), charge transfer coefficient (alpha) and apparent heterogeneous electron transfer rate constant (k(s)) were estimated by cyclic voltammetry and nonlinear regression analysis. Biocatalytic activity was exemplified at the prepared electrode for reduction of hydrogen peroxide.  相似文献   

6.
Lu Y  Xu J  Liu B  Kong J 《Biosensors & bioelectronics》2007,22(7):1173-1185
Photosynthetic reaction center (RC), a robust transmembrane pigment-protein complex, works as the crucial component participating the primary event of the photo-electrochemical conversion in bacteria. Sparked by the high photo-induced charge separation yield (ca. 100%) of RC, great interests have been aroused to fabricate versatile RC-functionalized nano-composite films for exploring the initial photosynthetic electron transfer (ET) of RC, and thus exploiting well-designed bio-photoelectric converters. In this review, we classify and summarize the current status about the concepts and methods of constructing RC-immobilized nano-composite films or devices for probing the photo-induced ET, and applying to novel bioelectronics if it is possible.  相似文献   

7.
We report on room temperature electron transfer in the reaction center (RC) complex purified from Rhodobacter sphaeroides. The protein was embedded in trehalose-water systems of different trehalose/water ratios. This enabled us to get new insights on the relationship between RC conformational dynamics and long-range electron transfer. In particular, we measured the kinetics of electron transfer from the primary reduced quinone acceptor (Q(A)(-)) to the primary photo oxidized donor (P(+)), by time-resolved absorption spectroscopy, as a function of the matrix composition. The composition was evaluated either by weighing (liquid samples) or by near infrared spectroscopy (highly viscous or solid glasses). Deconvolution of the observed, nonexponential kinetics required a continuous spectrum of rate constants. The average rate constant ( = 8.7 s(-1) in a 28% (w/w) trehalose solution) increases smoothly by increasing the trehalose/water ratio. In solid glasses, at trehalose/water ratios > or = 97%, an abrupt increase is observed ( = 26.6 s(-1) in the driest solid sample). A dramatic broadening of the rate distribution function parallels the above sudden increase. Both effects fully revert upon rehydration of the glass. We compared the kinetics observed at room temperature in extensively dried water-trehalose matrices with the ones measured in glycerol-water mixtures at cryogenic temperatures and conclude that, in solid trehalose-water glasses, the thermal fluctuations among conformational substates are inhibited. This was inferred from the large broadening of the rate constant distribution for electron transfer obtained in solid glasses, which was due to the free energy distribution barriers having become quasi static. Accordingly, the RC relaxation from dark-adapted to light-adapted conformation, which follows primary charge separation at room temperature, is progressively hindered over the time scale of P(+)Q(A)(-) charge recombination, upon decreasing the water content. In solid trehalose-water glasses the electron transfer process resulted much more affected than in RC dried in the absence of sugar. This indicated a larger hindering of the internal dynamics in trehalose-coated RC, notwithstanding the larger amount of residual water present in comparison with samples dried in the absence of sugar.  相似文献   

8.
Dai Z  Bai H  Hong M  Zhu Y  Bao J  Shen J 《Biosensors & bioelectronics》2008,23(12):1869-1873
A novel nitrite biosensor based on the direct electron transfer of hemoglobin (Hb) immobilized on CdS hollow nanospheres (HS-CdS) modified glassy carbon electrode was constructed. The direct electron transfer of Hb showed a pair of redox peaks with a formal potential of -286 mV (vs. SCE) in 0.1M pH 7.0 phosphate buffer solution. It was a surface-controlled electrode process involving a single proton transfer coupled with a reversible one-electron transfer for each heme group of Hb. HS-CdS had a large specific surface area and good biocompatibility and had a better electrochemical response than that of solid spherical CdS. The immobilized Hb on HS-CdS displayed an excellent response to NO(2)(-) with one irreversible electrode process for NO reduction. Under optimal conditions, the biosensor could be used for the determination of NO(2)(-) with a linear range from 0.3 to 182 microM and a detection limit of 0.08 microM at 3 sigma based on the irreversible reduction of NO. HS-CdS provided a good matrix for protein immobilization and had a promising application in constructing sensors.  相似文献   

9.
Using site-directed mutagenesis, we obtained the mutant of the purple bacterium Rhodobacter sphaeroides with Ile to His substitution at position 177 in the L-subunit of the photosynthetic reaction center (RC). The mutant strain forms stable and photochemically active RC complexes. Relative to the wild type RCs, the spectral and photochemical properties of the mutant RC differ significantly in the absorption regions corresponding to the primary donor P and the monomer bacteriochlorophyll (BChl) absorption. It is shown that the RC I(L177)H contains only three BChl molecules compared to four BChl molecules in the wild type RC. Considering the fact that the properties of both isolated and membrane-associated mutant RCs are similar, we conclude that the loss of a BChl molecule from the mutant RC is caused by the introduced mutation but not by the protein purification procedure. The new mutant missing one BChl molecule but still able to perform light-induced reactions forming the charge-separated state P+QA- appears to be an interesting object to study the mechanisms of the first steps of the primary electron transfer in photosynthesis.  相似文献   

10.
A hydrogen gas (H(2)) biosensor was developed in which hydrogenase (H(2)ase) was immobilized and sandwiched between two layers of a montmorillonite clay and poly(butylviologen) (PBV) mixture on a glass carbon electrode. The immobilized PBV efficiently enhanced the electron transfer among the electrode, H(2)ase, and methyl viologen in solution. Both PBV and methyl viologen acted as the electron carrier in the clay-PBV-H(2)ase modified electrode. The clay-PBV-H(2)ase electrode catalyzed the oxidation of H(2) to protons (H(+)) with the electrons being transferred by viologen groups to the electrode. The activation energy of this process was 38+/-2 kJ/mol at pH 7. The catalytic current of the clay-PBV-H(2)ase electrode increased linearly when exposed to increasing concentrations of H(2) gas. In contrast, this electrode showed no activity when exposed to three combustible compounds, namely, carbon monoxide, methane and methanol. The optimum pH range for the oxidation of H(2) by the clay-PBV-H(2)ase electrode was from 7 to 10. Electron transfer process in the clay-PBV-H(2)ase electrode is discussed.  相似文献   

11.
In this research, we reported a novel method of forming hemoglobin (Hb)-linoleic acid (LA) Langmuir-Blodgett (LB) monolayer by spreading Hb solution directly onto the subphase covered with a layer of LA. This method is suitable for preparing electrochemical devices with protein-lipid LB film because almost no protein adsorbed on electrode surface before protein-lipid film transferred from air-water interface to electrode, which ensured better electrode activity. The compressibility of Hb-LA monolayer was used to character the phase transition during compression process. Optimal experimental conditions were obtained by analyzing pressure-time, pressure-area and pressure-compressibility curves. The direct electrochemistry of Hb, which was immobilized on Au electrode surface incorporated with LA layer by LB method, was investigated using cyclic voltammetry for the first time. The electrode modified with Hb-LA LB film holds high electrochemical activity and shows a fast direct electron transfer of Hb. Redox peak currents increased linearly with the increase of scan rate, indicating a surface-controlled electrode process. The electron transfer rate constant was 2.68+/-0.45 s-1. As a target of this research, this work provides a new way to prepare biomimetic film and biosensor.  相似文献   

12.
PQQ glucose dehydrogenase from Acinetobacter calcoaceticus (GDH-B) is one of the most industrially attractive enzymes, as a sensor constituent for glucose sensing, because of its high catalytic activity and insensitivity to oxygen. We attempted to engineer GDH-B to enable electron transfer to the electrode in the absence of artificial electron mediator by mimicking the domain structure of the quinohemoprotein ethanol dehydrogenase (QH-EDH) from Comamonas testosteroni, which is composed of a PQQ-containing catalytic domain and a cytochrome c domain. We genetically fused the cytochrome c domain of QH-EDH to the C-terminal of GDH-B. The constructed fusion protein showed not only intra-molecular electron transfer, between PQQ and heme of the cytochrome c domain, but also electron transfer from heme to the electrode, thereby allowing the construction of a direct electron transfer-type glucose sensor.  相似文献   

13.
Due to their unique physicochemical properties, doped carbon nanotubes are now extremely attractive and important nanomaterials in bioanalytical applications. In this work, selecting glucose oxidase (GOD) as a model enzyme, we investigated the direct electrochemistry of GOD based on the B-doped carbon nanotubes/glassy carbon (BCNTs/GC) electrode with cyclic voltammetry. A pair of well-defined, quasi-reversible redox peaks of the immobilized GOD was observed at the BCNTs based enzyme electrode in 0.1M phosphate buffer solution (pH 6.98) by direct electron transfer between the protein and the electrode. As a new platform in glucose analysis, the new glucose biosensor based on the BCNTs/GC electrode has a sensitivity of 111.57 microA mM(-1)cm(-2), a linear range from 0.05 to 0.3mM and a detection limit of 0.01mM (S/N=3). Furthermore, the BCNTs modified electrode exhibits good stability and excellent anti-interferent ability to the commonly co-existed uric acid and ascorbic acid. These indicate that boron-doped carbon nanotubes are the good candidate material for the direct electrochemistry of the redox-active enzyme and the construction of the related enzyme biosensors.  相似文献   

14.
The direct voltammetry and electrocatalytic properties of catalase, which was adsorbed on the surface of multiwall carbon nanotubes (MWCNTs), was investigated. A pair of well-defined and nearly reversible cyclic voltammetry peaks for Fe(III)/Fe(II) redox couple of catalase adsorbed on the surface of MWCNTs at approximately -0.05 V versus reference electrode in pH 6.5 buffer solution, indicating the direct electron transfer between catalase and electrode. The surface coverage of catalase immobilized on MWCNTs glassy carbon electrode was approximately 2.4x10(-10) molcm-2. The transfer coefficient (alpha) was calculated to be 0.4, and the heterogeneous electron transfer rate constant was 80 s-1 in pH 7, indicating great facilitation of the electron transfer between catalase and MWCNTs adsorbed on the electrode surface. The formal potential of catalase Fe(III)/Fe(II) couple in MWCNTs film had a linear relationship with pH values between 2 and 11 with a slope of 58 mV/pH, showing that the electron transfer is accompanied by single proton transportation. Catalase adsorbed on MWCNTs exhibits a remarkable electrocatalytic activity toward the reduction of oxygen and hydrogen peroxide. The value for calculated Michaelis-Menten constant (1.70 mM) was high, indicating the potential applicability of the films as a new type of reagentless biosensor based on the direct electrochemistry of the catalase enzyme.  相似文献   

15.
The role of protein dynamics in the electron transfer from the reduced primary quinone, Q(A)(-), to the secondary quinone, Q(B), was studied at room temperature in isolated reaction centers (RC) from the photosynthetic bacterium Rhodobacter sphaeroides by incorporating the protein in trehalose water systems of different trehalose/water ratios. The effects of dehydration on the reaction kinetics were examined by analyzing charge recombination after different regimes of RC photoexcitation (single laser pulse, double flash, and continuous light) as well as by monitoring flash-induced electrochromic effects in the near infrared spectral region. Independent approaches show that dehydration of RC-containing matrices causes reversible, inhomogeneous inhibition of Q(A)(-)-to-Q(B) electron transfer, involving two subpopulations of RCs. In one of these populations (i.e., active), the electron transfer to Q(B) is slowed but still successfully competing with P(+)Q(A)(-) recombination, even in the driest samples; in the other (i.e., inactive), electron transfer to Q(B) after a laser pulse is hindered, inasmuch as only recombination of the P(+)Q(A)(-) state is observed. Small residual water variations ( approximately 7 wt %) modulate fully the relative fraction of the two populations, with the active one decreasing to zero in the driest samples. Analysis of charge recombination after continuous illumination indicates that, in the inactive subpopulation, the conformational changes that rate-limit electron transfer can be slowed by >4 orders of magnitude. The reported effects are consistent with conformational gating of the reaction and demonstrate that the conformational dynamics controlling electron transfer to Q(B) is strongly enslaved to the structure and dynamics of the surrounding medium. Comparing the effects of dehydration on P(+)Q(A)(-)-->PQ(A) recombination and Q(A)(-)Q(B)-->Q(A)Q(B)(-) electron transfer suggests that conformational changes gating the latter process are distinct from those stabilizing the primary charge-separated state.  相似文献   

16.
Qu F  Lu H  Yang M  Deng C 《Biosensors & bioelectronics》2011,26(12):4810-4814
A new electrochemical immunosensor for the detection of protein biomarker platelet-derived growth factor BB (PDGF-BB) was developed based on graphene oxide (GO) initiated silver enhancement. The immunosensor was fabricated based on the traditional sandwich protocol using secondary anti-PDGF-BB antibody (Ab(2)) modified GO as label. Gold electrode was first modified with self-assembled monolayer (SAM) to block the electron transfer between the electrode and K(3)Fe(CN)(6) solution. After the immobilization of primary anti-PDGF-BB antibody (Ab(1)) onto electrode via aminidation to the carboxylic group of SAM and the formation of the sandwich immuno-structure onto electrode surface, the electrode was immersed into silver enhancement solution for silver deposition. The deposited metal silver onto GO then mediated electron transfer across the SAM, producing redox current. The resulting immunosensor displays a wide range of linear response, low detection limit, good reproducibility and stability. The immunosensor was used to the detection of PDGF-BB contents in serum samples with satisfactory results.  相似文献   

17.
The kinetics of light-induced electron transfer in reaction centers (RCs) from the purple photosynthetic bacterium Rhodobacter sphaeroides were studied in the presence of the detergent lauryldimethylamine-N-oxide (LDAO). After the light-induced electron transfer from the primary donor (P) to the acceptor quinone complex, the dark re-reduction of P+ reflects recombination from the reduced acceptor quinones, QA- or QB-. The secondary quinone, QB, which is loosely bound to the RC, determines the rate of this process. Electron transfer to QB slows down the return of the electron to P+, giving rise to a slow phase of the recovery kinetics with time tau P approximately 1 s, whereas charge recombination in RCs lacking QB generates a fast phase with time tau AP approximately 0.1 s. The amount of quinone bound to RC micelles can be reduced by increasing the detergent concentration. The characteristic time of the slow component of P+ dark relaxation, observed at low quinone content per RC micelle (at high detergent concentration), is about 1.2-1.5 s, in sharp contrast to expectations from previous models, according to which the time of the slow component should approach the time of the fast component (about 0.1 s) when the quinone concentration approaches zero. To account for this large discrepancy, a new quantitative approach has been developed to analyze the kinetics of electron transfer in isolated RCs with the following key features: 1) The exchange of quinone between different micelles (RC and detergent micelles) occurs more slowly than electron transfer from QB- to P+; 2) The exchange of quinone between the detergent "phase" and the QB binding site within the same RC micelle is much faster than electron transfer between QA- and P+; 3) The time of the slow component of P+ dark relaxation is determined by (n) > or = 1, the average number of quinones in RC micelles, calculated only for those RC micelles that have at least one quinone per RC (in excess of QA). An analytical function is derived that relates the time of the slow component of P+ relaxation, tau P, and the relative amplitude of the slow phase. This provides a useful means of determining the true equilibrium constant of electron transfer between QA and QB (LAB), and the association equilibrium constant of quinone binding at the QB site (KQ+). We found that LAB = 22 +/- 3 and KQ = 0.6 +/- 0.2 at pH 7.5. The analysis shows that saturation of the QB binding site in detergent-solubilized RCs is difficult to achieve with hydrophobic quinones. This has important implications for the interpretation of apparent dependencies of QB function on environmental parameters (e.g. pH) and on mutational alterations. The model accounts for the effects of detergent and quinone concentration on electron transfer in the acceptor quinone complex, and the conclusions are of general significance for the study of quinone-binding membrane proteins in detergent solutions.  相似文献   

18.
A mediatorless biosensor for putrescine using multiwalled carbon nanotubes   总被引:5,自引:0,他引:5  
Poly(diallyldimethylammonium) chloride, having a capability of dispersing multiwalled carbon nanotubes (MWCNTs), permits the modification of electrode surfaces. Together with putrescine oxidase, a MWCNT modified glassy carbon electrode was constructed for the development of a mediatorless putrescine biosensor. Nanoscale "dendrites" of MWCNTs were reasoned to form a network, projecting outward from the electrode surface acting like bundled ultra-microelectrodes, thereby permitting access to the active site and facilitating direct electron transfer to the immobilized enzyme. Our biosensor was capable of efficiently monitoring the direct electroactivity of putrescine oxidase at the electrode surface. Direct electron transfer permits the detection of putrescine at negative potentials, circumventing the interference of endogenous ascorbic and uric acids, which often complicate the analysis of important compounds in plasma. Compared with the most common interfering species, such as spermine, spermidine, cadaverine, and histamine, a detection limit of 5 microM and a response 20 times greater were found for putrescine. Tests performed on plasma of cancerous mice demonstrated that the detection of putrescine could be carried out very quickly on mammalian plasma without previous purification.  相似文献   

19.
The layer-by-layer (LBL) construction of an enzyme electrode covered with a multilayer structure alternately composed of a polymeric electron transfer mediator and a polymer-modified enzyme was examined. Poly(2-methacryloyloxyethyl phosphorylcholine-co-p-vinylphenylboronic acid-co-vinylferrocene) (PMVF) was synthesized and used as a polymeric electron transfer mediator. Glucose oxidase (GOx) was selected as a model enzyme and poly(vinyl alcohol) (PVA) chains were bound to the GOx (GOx-PVA) under mild conditions. The PMVF and PVA formed a gel spontaneously through a selective reaction between phenylboronic acid units and hydroxyl groups in both polymers. Using the spin coating technique, a repeating PMVF/GOx-PVA multilayer was fabricated on the surface of an Au electrode. The thickness of each PMVF/GOx-PVA layer was around 5.8 nm, corresponding to the dimensions of GOx. The electrochemical performance of the electrode was evaluated in glucose concentration measurement. The oxidation current of glucose by GOx was measured at 0.38 V (vs. Ag/AgCl), verifying that ferrocene units in the PMVF of the hydrogel electrically wired the immobilized GOx. Moreover, the current increased with the number of PMVF/GOx-PVA layers. That is, both intermolecular electron transfer between each individual layer and the presence of a freely diffusing substrate in the hydrogel were achieved. We conclude that a LBL structure constructed from PMVF and a PVA-modified enzyme is effective for use in developing bioelectronic devices that employ enzyme molecules.  相似文献   

20.
《BBA》2020,1861(8):148204
Precise folding of photosynthetic proteins and organization of multicomponent assemblies to form functional entities are fundamental to efficient photosynthetic electron transfer. The bacteriochlorophyll b-producing purple bacterium Blastochloris viridis possesses a simplified photosynthetic apparatus. The light-harvesting (LH) antenna complex surrounds the photosynthetic reaction center (RC) to form the RC-LH1 complex. A non-membranous tetraheme cytochrome (4Hcyt) subunit is anchored at the periplasmic surface of the RC, functioning as the electron donor to transfer electrons from mobile electron carriers to the RC. Here, we use atomic force microscopy (AFM) and single-molecule force spectroscopy (SMFS) to probe the long-range organization of the photosynthetic apparatus from Blc. viridis and the unfolding pathway of the 4Hcyt subunit in its native supramolecular assembly with its functional partners. AFM images reveal that the RC-LH1 complexes are densely organized in the photosynthetic membranes, with restricted lateral protein diffusion. Unfolding of the 4Hcyt subunit represents a multi-step process and the unfolding forces of the 4Hcyt α-helices are approximately 121 picoNewtons. Pulling of 4Hcyt could also result in the unfolding of the RC L subunit that binds with the N-terminus of 4Hcyt, suggesting strong interactions between RC subunits. This study provides new insights into the protein folding and interactions of photosynthetic multicomponent complexes, which are essential for their structural and functional integrity to conduct photosynthetic electron flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号