首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myo-inositol may be incorporated in the formation of phosphatidylinositol by two mechanisms. One reaction utilizes CDP-diacylglycerol and is catalyzed by phosphatidylinositol (PtdIns) synthase (CDP-diacylglycerol: myo-inositol 3-phosphatidyltransferase, EC 2.7.8.11). The second reaction is the phosphatidylinositol: myo-inositol exchange reaction, in which a free inositol is exchanged for an existing inositol headgroup. This characterization of inositol incorporation into phosphatidylinositol in the green alga Chlamydomonas reinhardtii provides evidence for the presence of both reactions. The transferase reaction required a divalent cation and exhibited its maximum activity at 2.0 mM Mn2+. The optimal pH for this reaction was 8.5–9.0. The best substrate concentrations were 0.5 mM CDP-diacylglycerol and 1.2 mM myo-inositol, with an estimated Km for myo-inositol of 0.2 mM. The exchange reaction also required Mn2+ for activity, but became saturated at 0.5 mM Mn2+. The optimal pH of the exchange reaction was 8.0, the optimal myo-inositol concentration was 0.3 mM, and the estimated Km for myo-inositol in this reaction was 0.015 mM. Measurement of the transferase reaction in cell fractions of Creinhardtii indicated that the activity occurred primarily in the microsomal fraction, with little or no activity in the plastids.  相似文献   

2.
Phosphatidylethanolamine, but not phosphatidylcholine, is found in Chlamydomonas reinhardtii. A cDNA coding for diacylglycerol: CDP-ethanolamine ethanolaminephosphotransferase (EPT) was cloned from C. reinhardtii. The C. reinhardtii EPT appears phylogenetically more similar to mammalian aminoalcoholphosphotransferases than to those of yeast and the least close to those of plants. Similar membrane topography was found between the C. reinhardtii EPT and the aminoalcoholphosphotransferases from mammals, yeast, and plants. A yeast mutant deficient in both cholinephosphotransferase and ethanolaminephosphotransferase was complemented by the C. reinhardtii EPT gene. Enzymatic assays of C. reinhardtii EPT from the complemented yeast microsomes demonstrated that the C. reinhardtii EPT synthesized both PC and PE in the transformed yeast. The addition of either unlabeled CDP-ethanolamine or CDP-choline to reactions reduced incorporation of radiolabeled CDP-choline and radiolabeled CDP-ethanolamine into phosphatidylcholine and phosphatidylethanolamine. EPT activity from the transformed yeast or C. reinhardtii cells was inhibited nearly identically by unlabeled CDP-choline, CDP-ethanolamine, and CMP when [14C]CDP-choline was used as the primary substrate, but differentially by unlabeled CDP-choline and CDP-ethanolamine when [14C]CDP-ethanolamine was the primary substrate. The Km value of the enzyme for CDP-choline was smaller than that for CDP-ethanolamine. This provides evidence that C. reinhardtii EPT, similar to plant aminoalcoholphosphotransferase, is capable of catalyzing the final step of phosphatidylcholine biosynthesis, as well as that of phosphatidylethanolamine in the Kennedy pathway.  相似文献   

3.
微藻中脂质代谢产生的化合物,可用于生物燃料、营养品和生物药品的生产,因此具有重要的经济价值。脂质代谢贯穿微藻的全部生命过程,对微藻的生长发育和应对外界胁迫都具有重要意义。微藻与研究较清楚的真菌和陆地植物在脂质代谢过程方面具有相似性。当然,随着微藻脂质代谢相关功能基因逐渐被鉴定,人们发现微藻的脂质代谢也具有区别真菌和陆地植物的独特性,因此针对微藻脂质代谢过程的分析具有重要意义。莱茵衣藻是研究脂质代谢过程的模式生物,已经通过基因组、转录组、蛋白质组和代谢组等方法,对其质体、内质网和过氧化物酶体中进行的脂质合成和分解过程进行了研究。本文总结了近年来莱茵衣藻质体、内质网和过氧化物酶体中脂质代谢过程的研究成果,并进行综合阐述。  相似文献   

4.
Studies of in vitro processing of precursors of the major chlorophyll a/b-binding polypeptides of Chlamydomonas reinhardtii y-1 were undertaken to define the precursor-product relationships. Analysis of translates, prepared from C. reinhardtii poly(A)-rich RNA in a rabbit reticulocyte lysate system, which were incubated with the soluble fraction from C. reinhardtii cells, showed that the 31,500 relative molecular mass (Mr) precursor was converted to the Mr 29,500 thylakoid membrane polypeptide whereas the Mr 30,000 precursor was converted to the Mr 26,000 product. Furthermore, the Mr 31,500 polypeptide, when bound to antibodies, was not processed to the mature polypeptide of Mr 29,500, although the presence of antibodies did not prevent the precursor of Mr 30,000 from being converted to the mature Mr 26,000 polypeptide. The mature fraction of Mr 26,000, was separated into two bands corresponding to polypeptides 16 and 17 in the electrophoretic system of Chua and Bennoun (1975 Proc Natl Acad Sci USA 72: 2175-2179).

Processing activity was present in the soluble fraction obtained from cells grown in the light or in the dark. Therefore, processing of the precursor polypeptides does not appear to be involved in the regulation by light of the accumulation of these polypeptides in thylakoid membranes.

  相似文献   

5.
Lohr M  Im CS  Grossman AR 《Plant physiology》2005,138(1):490-515
The unicellular green alga Chlamydomonas reinhardtii is a particularly important model organism for the study of photosynthesis since this alga can grow heterotrophically, and mutants in photosynthesis are therefore conditional rather than lethal. The recently developed tools for genomic analyses of this organism have allowed us to identify most of the genes required for chlorophyll and carotenoid biosynthesis and to examine their phylogenetic relationships with homologous genes from vascular plants, other algae, and cyanobacteria. Comparative genome analyses revealed some intriguing features associated with pigment biosynthesis in C. reinhardtii; in some cases, there are additional conserved domains in the algal and plant but not the cyanobacterial proteins that may directly influence their activity, assembly, or regulation. For some steps in the chlorophyll biosynthetic pathway, we found multiple gene copies encoding putative isozymes. Phylogenetic studies, theoretical evaluation of gene expression through analysis of expressed sequence tag data and codon bias of each gene, enabled us to generate hypotheses concerning the function and regulation of the individual genes, and to propose targets for future research. We have also used quantitative polymerase chain reaction to examine the effect of low fluence light on the level of mRNA accumulation encoding key proteins of the biosynthetic pathways and examined differential expression of those genes encoding isozymes that function in the pathways. This work is directing us toward the exploration of the role of specific photoreceptors in the biosynthesis of pigments and the coordination of pigment biosynthesis with the synthesis of proteins of the photosynthetic apparatus.  相似文献   

6.
Glutathionylation is the major form of S-thiolation in cells. This reversible redox post-translational modification consists of the formation of a mixed disulfide between a free thiol on a protein and a molecule of glutathione. This recently described modification, which is considered to occur under oxidative stress, can protect cysteine residues from irreversible oxidation, and alter positively or negatively the activity of diverse proteins. This modification and its targets have been mainly studied in non-photosynthetic organisms so far. We report here the first proteomic approach performed in vivo on photosynthetically competent cells, using the eukaryotic unicellular green alga Chlamydomonas reinhardtii with radiolabeled [(35)S]cysteine to label the glutathione pool and diamide as oxidant. This method allowed the identification of 25 targets, mainly chloroplastic, involved in various metabolic processes. Several targets are related to photosynthesis, such as the Calvin cycle enzymes phosphoglycerate kinase and ribose-5-phosphate isomerase. A number of targets, such as chaperones and peroxiredoxins, are related to stress responses. The glutathionylation of HSP70B, chloroplastic 2-Cys peroxiredoxin and isocitrate lyase was confirmed in vitro on purified proteins and the targeted residues were identified.  相似文献   

7.
Microalgae have the potential to accumulate triacylglycerols under different light spectra. In this work, Chlamydomonas reinhardtii was grown under white (400–700 nm), red (650 nm), and green (550 nm) lights. According to our results, red light (650 nm) has a positive effect in the microalgae growth and chlorophyll concentration. About the lipid content, the control culture (white light‐illuminated) reached a 4.4% of dry cell weight (dcw), whereas the culture grown at 550 nm showed an increase of 1.35‐fold in the lipids accumulation (5.96% dcw). Interestingly, the most significant accumulation was found in the culture grown at 650 nm (14.78% dcw) which means 3.36‐fold higher with respect to the white light‐illuminated culture. The most abundant fatty acids found in lipid extracts obtained from the cultures under different light wavelength were palmitic (C16: 0), oleic (C18: 1n9), stearidonic (C18: 4), and linoleic (C18: 2), which are useful in the biodiesel production. Changes in gene expression in response to different wavelength illuminations were assessed; however, an in‐depth analysis of a larger number of genes involved in lipid biosynthesis is necessary to fully explain the highest accumulation of lipids in the culture grown under red light. This approach will be useful to find a sustainable source of lipids for biodiesel production. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1404–1411, 2016  相似文献   

8.
Most higher plants and microalgae are not able to synthesize ketocarotenoids. In this study the unicellular chlorophyte Chlamydomonas reinhardtii has been genetically engineered with the beta-carotene ketolase cDNA from Haematococcus pluvialis, bkt1 (GeneBank accession no. X86782), involved in the synthesis of astaxanthin, to obtain a transgenic microalga able to synthesize ketocarotenoids. The expression of bkt1 was driven by the Chlamydomonas constitutive promoter of the rubisco small subunit (RbcS2) and the resulting protein was directed to the chloroplast by the Chlamydomonas transit peptide sequences of Rubisco small subunit (RbcS2) or Ferredoxin (Fd). In all transformants containing the bkt1 gene fused to the RbcS2 or the Fd transit peptides a new pigment with the typical ketocarotenoid spectrum was detected. Surprisingly this ketocarotenoid was not astaxanthin nor canthaxanthin. The ketocarotenoid was identified on the basis of its mass spectrum as 3,3'-dihydroxy-beta,varepsilon-carotene-4-one (4-keto-lutein) or its isomer ketozeaxanthin.  相似文献   

9.
Chlamydomonas reinhardtii is a single-celled green alga that phototaxes toward light by means of a light-sensitive organelle, the eyespot. The eyespot is composed of photoreceptor and Ca(++)-channel signal transduction components in the plasma membrane of the cell and reflective carotenoid pigment layers in an underlying region of the large chloroplast. To identify components important for the positioning and assembly of a functional eyespot, a large collection of nonphototactic mutants was screened for those with aberrant pigment spots. Four loci were identified. eye2 and eye3 mutants have no pigmented eyespots. min1 mutants have smaller than wild-type eyespots. mlt1(ptx4) mutants have multiple eyespots. The MIN1, MLT1(PTX4), and EYE2 loci are closely linked to each other; EYE3 is unlinked to the other three loci. The eye2 and eye3 mutants are epistatic to min1 and mlt1 mutations; all double mutants are eyeless. min1 mlt1 double mutants have a synthetic phenotype; they are eyeless or have very small, misplaced eyespots. Ultrastructural studies revealed that the min1 mutants are defective in the physical connection between the plasma membrane and the chloroplast envelope membranes in the region of the pigment granules. Characterization of these four loci will provide a beginning for the understanding of eyespot assembly and localization in the cell.  相似文献   

10.
The photosynthetic single cellular alga Chlamydomonas reinhardtii has been used as a model organism to examine in detail the physiological, biochemical and molecular processes of photosynthesis, flagella synthesis and movement, mineral stress, interactions between nucleus, chloroplasts and mitochondria and other processes. In this review we summarize part of the current knowledge on adaptive responses in C. reinhardtii when it is exposed to oxidative stress and to changes in light intensity, concentration of minerals, herbicides and metals. The individual responses are linked in order to understand the response of the cell, which is continuously subjected to fluctuations, as a whole.  相似文献   

11.
As we had found previously that thapsigargin, an endomembrane Ca2+-ATPase inhibitor, induces production of intracellular platelet-activating factor (PAF) [Br. J. Pharmacol. 116 (1995) 2141], we decided to investigate the possible roles of intracellular PAF in nuclear factor (NF)-kappaB activation of thapsigargin-stimulated rat peritoneal macrophages. When rat peritoneal macrophages were stimulated with thapsigargin, the level of inhibitory protein of NF-kappaB-alpha (IkappaB-alpha) was decreased and the nuclear translocation of NF-kappaB was increased. The thapsigargin-induced activation of NF-kappaB was inhibited by the PAF synthesis inhibitor SK&F 98625 and the PAF antagonist E6123. Structurally unrelated PAF antagonists such as E5880 and L-652,731 also inhibited the thapsigargin-induced activation of NF-kappaB. Lipopolysaccharide (LPS)-induced activation of NF-kappaB was also suppressed by these drugs. In a culture of rat peritoneal macrophages, exogenously added PAF did not induce degradation of IkappaB-alpha. These findings suggest that the intracellular PAF produced by the stimulation with thapsigargin or LPS is involved in activation of the NF-kappaB pathway.  相似文献   

12.
The green alga Chlamydomonas reinhardtii is one of the most studied microalgae, which has the potential to be used as a model system to study lipid metabolism. Establishment of a method in this organism for rapid and simple measurement of neutral lipids is desirable. Fluorescent measurement of neural lipids by Nile Red staining has been widely used in various cell types including microalgae. However, a systematic study of Nile Red staining to measure neutral lipids in Chlamydomonas has not been reported. Here, we show that Nile Red staining is suitable for relative and absolute quantification of neutral lipids as well as for possible large-scale screening for mutants defective in lipid accumulation. We have compared and optimized the factors involved Nile Red staining including solvents, cell concentration, staining time, and Nile Red concentration. We determined that 5 % DMSO with 1 μg mL?1 Nile Red and 5–15-min time window after staining was optimal for measuring lipid content of cells within the range of 1 to 8?×?106 cells mL?1. The absolute quantification of neutral lipids could be achieved by standard addition method. In addition, we developed a protocol that could be potentially used for large-scale screening for cells with different lipid content. Thus, the work reported here provides timely needed techniques to facilitate Chlamydomonas to be used as a model organism for studying lipid metabolism for biodiesel production.  相似文献   

13.
In plants, neutral lipids are frequently synthesized and stored in seed tissues, where the assembly of lipid droplets (LDs) coincides with the accumulation of triacylglycerols (TAGs). In addition, photosynthetic, vegetative cells can form cytosolic LDs and much less information is known about the makeup and biogenesis of these LDs. Here we focus on Chlamydomonas reinhardtii as a reference model for LDs in a photosynthetic cell, because in this unicellular green alga LD dynamics can be readily manipulated by nitrogen availability. Nitrogen deprivation leads to cellular quiescence during which cell divisions cease and TAGs accumulate. The major lipid droplet protein (MLDP) forms a proteinaceous coat surrounding mature LDs. Reducing the amount of MLDP affects LD size and number, TAG breakdown and timely progression out of cellular quiescence following nitrogen resupply. Depending on nitrogen availability, MLDP recruits different proteins to LDs, tubulins in particular. Conversely, depolymerization of microtubules drastically alters the association of MLDP with LDs. LDs also contain select chloroplast envelope membrane proteins hinting at an origin of LDs, at least in part, from chloroplast membranes. Moreover, LD surface lipids are rich in de novo synthesized fatty acids, and are mainly composed of galactolipids which are typical components of chloroplast membranes. The composition of the LD membrane is altered in the absence of MLDP. Collectively, our results suggest a mechanism for LD formation in C. reinhardtii involving chloroplast envelope membranes by which specific proteins are recruited to LDs and a specialized polar lipid monolayer surrounding the LD is formed.  相似文献   

14.
Chemotactic responses of Chlamydomonas reinhardtii.   总被引:1,自引:0,他引:1       下载免费PDF全文
A capillary chemotaxis assay revealed that among a wide range of inorganic and organic chemicals, only ammonium ion (NH4+) could serve as an attractant of Chlamydomonas reinhardtii. NH4+ (10(-2) M) gave the maximum response, with up to a 15-fold increase in accumulated algae being measured. No repellents for the chlorophyte were detected. The response to NH4+ was influenced by exogenous levels of calcium, but not by L-methionine. The optimal pH for positive chemotaxis was 7.0; however, attraction was measurable from pH 4.0 to 9.0. Positive chemotaxis was stimulated by performing the assay under fluorescent illumination rather than in the dark.  相似文献   

15.
Lipid metabolism in flowering plants has been intensely studied, and knowledge regarding the identities of genes encoding components of the major fatty acid and membrane lipid biosynthetic pathways is very extensive. We now present an in silico analysis of fatty acid and glycerolipid metabolism in an algal model, enabled by the recent availability of expressed sequence tag and genomic sequences of Chlamydomonas reinhardtii. Genes encoding proteins involved in membrane biogenesis were predicted on the basis of similarity to proteins with confirmed functions and were organized so as to reconstruct the major pathways of glycerolipid synthesis in Chlamydomonas. This analysis accounts for the majority of genes predicted to encode enzymes involved in anabolic reactions of membrane lipid biosynthesis and compares and contrasts these pathways in Chlamydomonas and flowering plants. As an important result of the bioinformatics analysis, we identified and isolated the C. reinhardtii BTA1 (BTA1Cr) gene and analyzed the bifunctional protein that it encodes; we predicted this protein to be sufficient for the synthesis of the betaine lipid diacylglyceryl-N,N,N-trimethylhomoserine (DGTS), a major membrane component in Chlamydomonas. Heterologous expression of BTA1Cr led to DGTS accumulation in Escherichia coli, which normally lacks this lipid, and allowed in vitro analysis of the enzymatic properties of BTA1Cr. In contrast, in the bacterium Rhodobacter sphaeroides, two separate proteins, BtaARs and BtaBRs, are required for the biosynthesis of DGTS. Site-directed mutagenesis of the active sites of the two domains of BTA1Cr allowed us to study their activities separately, demonstrating directly their functional homology to the bacterial orthologs BtaARs and BtaBRs.  相似文献   

16.
17.
18.
19.
Fan J  Andre C  Xu C 《FEBS letters》2011,585(12):1985-1991
Neutral lipid metabolism has been extensively studied in yeast, plants and mammals. In contrast, little information is available regarding the biochemical pathway, enzymes and regulatory factors involved in the biosynthesis of triacylglycerol (TAG) in microalgae. In the conventional TAG biosynthetic pathway widely accepted for yeast, plants and mammals, TAG is assembled in the endoplasmic reticulum (ER) from its immediate precursor diacylglycerol (DAG) made by ER-specific acyltransferases, and is deposited exclusively in lipid droplets in the cytosol. Here, we demonstrated that the unicellular microalga Chlamydomonas reinhardtii employs a distinct pathway that uses DAG derived almost exclusively from the chloroplast to produce TAG. This unique TAG biosynthesis pathway is largely dependent on de novo fatty acid synthesis, and the TAG formed in this pathway is stored in lipid droplets in both the chloroplast and the cytosol. These findings have wide implications for understanding TAG biosynthesis and storage and other areas of lipid metabolism in microalgae and other organisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号