共查询到20条相似文献,搜索用时 46 毫秒
1.
晋西北生态脆弱区土地利用动态变化及驱动力 总被引:1,自引:0,他引:1
基于遥感和GIS技术,结合相关统计资料,以典型生态脆弱区晋西北为研究对象,利用获取的1980、1990、2000及2010年4期土地利用信息,对该区1980—2010年的土地利用动态变化特征及驱动因素进行分析.结果表明: 1980—2010年,研究区土地利用结构发生了明显变化,耕地面积持续减少,草地和林地面积分别经历了增-减-增和减-增-减的过程,工矿居民地面积持续增加,水域和未利用地面积持续减少.耕地主要流向草地和林地;工矿居民地的增加主要以耕地面积的减少为代价;减少的水域面积转为草地和耕地;未利用地的持续减少则是由于生态工程实施和城市扩张占用所致.2000年之前,研究区总体土地利用变化程度高于后期;单一土地利用动态度的变化,以工矿居民地、未利用地及林地和草地的变化程度较剧烈.驱动力分析表明,人口增加和经济发展共同驱动了区域耕地和工矿居民地的演变;多个林业生态工程的实施是驱动林草面积变化的主要对策因素;干旱化加剧的气候特征是水域面积持续减少及林地恢复较慢的主要驱动因素. 相似文献
2.
3.
从石油污染的污泥中分离出10株细菌(SB01—SB10),研究了有(或无)共基质(葡萄糖Glu,或菲PHE)对细菌降解芘(PYR)的影响.结果表明:当以PYR为唯一碳源和能源时(MS1),SB01的PYR降解率最高,5 d可降解30.4%;以Glu为共代谢基质时(MS2),SB09的PYR降解率最高,可达37.7%;以PHE为共代谢基质时(MS3),SB10的PYR降解率为50.2%.Glu抑制SB01、SB03对PYR的降解,对SB01抑制作用最明显,使SB01的PYR降解率降低7.9%;Glu对SB02、SB07、SB08、SB10降解率无明显促进或抑制作用.PHE对细菌降解PYR均有促进作用,对SB10的促进作用最明显,使其降解率提高298%.Glu与PHE对SB04和SB09降解PYR的促进作用无显著差异,而对其它各菌株而言,PHE对PYR降解的促进作用大于Glu. 相似文献
4.
5.
利用PVC管顶盖埋管法研究了晋西北黄土高原区小叶锦鸡儿人工灌丛不同定植年限(5,10,20,30,40a)土壤氮矿化与硝化速率的动态和净矿化与硝化总量。结果表明,⑴小叶锦鸡儿灌丛土壤无机氮主要以NO_-~3-N形式存在,不同生长年限相同月份的土壤硝态氮(NO-3-N)含量分别是铵态氮(NH+4-N)含量的1.5—15.4倍;⑵土壤氮素硝化速率和矿化速率随生长年限延长而加快,30年生时达到高峰,数值达40.2,44.1 mg m~(-2)d~(-1)。从季节性变化看,7—8月份是硝化速率和矿化速率快速增长期,30年生小叶锦鸡儿灌丛土壤硝化速率和矿化速率分别达到86.9,93.1 mg m~(-2)d~(-1),显著高于其它生长年限(P0.05);(3)土壤氮素硝化与矿化总量同样随小叶锦鸡儿生长年限延长而增加,30年生时达到最高,与5年生相比,分别增加了3.7和3.1倍。(4)5—10月份小叶锦鸡儿生长期内,各年限土壤全氮量的2.3%被矿化成无机氮,其中87%最终被转化成NO-3-N形式存在于土体中。 相似文献
6.
晋西北地区是黄土高原及北方农牧交错带的重要组成部分和典型的生态环境脆弱区, 土壤水分是该区限制林草生长的主要因子, 其土地植被承载力实质上是土壤水分植被承载力。为确定晋西北地区土壤干层深度、了解不同植被土壤的水分差异, 对岚县5 种植被类型下0-600 cm 土壤深度的水分含量变化进行对比研究, 并得出以下结论: 不同植被类型下土壤含水量变化范围为沙棘>柠条>草地>落叶松>青杄, 数值分别为10.23%- 36.91%、11.28%-24.83%、10.69%-24.06%、11.12%-24.01%、10.07%-19.47%、5 种植被的土壤含水量均呈现上升趋势; 不同植被下土壤平均含水量大小为沙棘>草地>柠条>落叶松>青杄, 数值分别为(20.68±7.83)%、(18.41±3.47)%、(17.42±5.42)%、(16.71±4.32)%、(15.29±3.13)%; 土壤含水量与土壤深度的曲线拟合呈线性关系; 土壤含水量与植被类型呈极显著负相关(P < 0.01), 与土壤深度呈极显著正相关(P < 0.01)。 相似文献
7.
鱼虾混养生态系中细菌动态变化的研究 总被引:14,自引:4,他引:14
中国对虾和黑鲷混养生态系中几种主要细菌的动态变化研究结果表明 ,养殖初期 ,鱼虾混养池水体中异养菌总量和硝酸盐还原菌数量较低 ,但高于对照的对虾单养池 .随着养殖时间的推移 ,对照池的两种菌的菌量急剧增加 ,8、9月份菌量仍维持在较高水平 ;而混养池的菌量在高温季节虽有增加 ,但仍保持在 10 4 cells·ml-1范围内 ,增长幅度远远低于对照池 ,且 9月底开始下降 .底泥中的细菌数量与水体中细菌有相似的变化规律 ,但一般高于同期水中菌量 1~ 2个数量级 .混养池中的弧菌数量一直低于同期对照池 .可见 ,鱼虾混养可通过对养殖生态系中细菌的激活和调节作用 ,调节生态系统的物质循环 ,使其保持高速、稳定运行 ,为对虾生长提供一个健康而稳定的环境 ,同时增加综合养殖效益 相似文献
8.
9.
土壤硅酸盐细菌的研究进展 总被引:1,自引:0,他引:1
目的 不同土壤均含有丰富的磷、钾元素,但它们多以稳定的铝硅酸盐和磷灰石状态存在,不能直接为作物吸收和利用.硅酸盐细菌能通过代谢产生有机酸、多糖而释放出可溶态的磷、钾、硅等元素,而且具有一定的固氮能力,有利于植物的吸收和利用.因此土壤硅酸盐细菌的研究,不仅可为挖掘土壤潜在肥力、维持农业可持续发展提供理论基础,也具有重要的实践指导意义.本研究从硅酸盐细菌在土壤中的分布、研究方法、应用等方面对国内外土壤硅酸盐细菌的研究概况进行综述. 相似文献
10.
基于Probit回归模型的经济发达地区土地利用变化驱动力分析——以南京市为例 总被引:1,自引:0,他引:1
基于1996、2002及2010年的遥感影像,借助RS和GIS技术,分析南京市1996—2010年土地利用变化特征,并采用Probit回归模型定量分析土地利用变化驱动因素.结果表明: 1996—2010年,南京市土地利用变化特征主要表现为耕地和林地面积不断减少,建设用地、园地和草地面积持续增加,综合土地利用变化率呈不断上升趋势,整体处于发展状态;通过对耕地和林地变化的回归分析发现,耕地变化在1996—2002年主要受距最近农村居民点距离和农业人口密度变化的影响,在2002—2010年主要受地均GDP变化、距最近农村居民点距离和距最近道路距离的影响;而林地变化在1996—2002年主要受高程和距最近农村居民点距离的影响,在2002—2010年主要受地均GDP变化、人口密度变化和距最近道路距离的影响.影响研究区土地利用变化的因素早期主要是自然和空间距离因素,而近年主要是社会经济和人口因素. 相似文献
11.
Mahesh A. Rege David R. Mills James N. Petersen Yunwei Sun David R. Yonge William A. Apel 《Biotechnology Techniques》1998,12(12):913-918
An approach to estimate the parameters needed to describe the performance of a column packed with BioSepTM beads is presented. These parameters, which characterize the transport of materials through the column, have been estimated from experimental residence time distribution (RTD) data using both porous and non-porous beads. A laboratory-scale column was used to obtain the experimental data using several ionic species. © Rapid Science Ltd. 1998 相似文献
12.
Though an essential trace element, manganese is generally accorded little importance in biology other than as a cofactor for some free radical detoxifying enzymes and in the photosynthetic photosystem II. Only a handful of other Mn2+-dependent enzymes are known. Recent data, primarily in bacteria, suggest that Mn2+-dependent processes may have significantly greater physiological importance. Two major classes of prokaryotic Mn2+ uptake systems have now been described, one homologous to eukaryotic Nramp transporters and one a member of the ABC-type ATPase superfamily. Each is highly selective for Mn2+ over Fe2+ or other transition metal divalent cations, and each can accumulate millimolar amounts of intracellular Mn2+ even when environmental Mn2+ is scarce. In Salmonella enterica serovar Typhimurium, simultaneous mutation of both types of transporter results in avirulence, implying that one or more Mn2+-dependent enzymes is essential for pathogenesis. This review summarizes current literature on Mn2+ transport, primarily in the Bacteria but with relevant comparisons to the Archaea and Eukaryota. Mn2+-dependent enzymes are then discussed along with some speculations as to their role(s) in cellular physiology, again primarily in Bacteria. It is of particular interest that most of the enzymes which interconvert phosphoglycerate, pyruvate, and oxaloacetate intermediates are either strictly Mn2+-dependent or highly stimulated by Mn2+. This suggests that Mn2+ may play an important role in central carbon metabolism. Further studies will be required, however, to determine whether these or other actions of Mn2+ within the cell are the relevant factors in pathogenesis. 相似文献
13.
14.
OmpF and OmpC porin channels are responsible for the passage of small hydrophilic solutes across the outer membrane of Escherichia coli. Although these channels are two of the most extensively studied porin channels, what had yet remained elusive was the reason why OmpC shows markedly lower permeability than OmpF, despite having little difference in its channel size. The OmpC channel, however, is known to contain a larger number of ionizable residues than the OmpF channel. In this study, we examined the channel property of OmpF and OmpC using the intact cell of E. coli, and we found that the permeability of several β-lactams and lactose through OmpC became increased to the level comparable with OmpF with up to 0.3 m salt that may increase the Debye-Hückel shielding or with 2% ethanol or 0.3 m urea that may perturb the short range ordering of water molecules. Replacing 10 pore-lining residues that show different ionization behavior between OmpC and OmpF led to substantial conversion of channel property with respect to their permeability and response to external salt concentration. We thus propose that the overall configuration of ionizable residues in the channel that may orient water molecules and the electrostatic profile of the channel play a decisive role in defining the channel property of the OmpC porin rather than its channel size. 相似文献
15.
Efficient iron acquisition is critical for an invading microbe’s survival and virulence. Most of the iron in mammals is incorporated into heme, which can be plundered by certain bacterial pathogens as a nutritional iron source. Utilization of exogenous heme by bacteria involves the binding of heme or hemoproteins to the cell surface receptors, followed by the transport of heme into cells. Once taken into the cytosol, heme is presented to heme oxygenases where the tetrapyrrole ring is cleaved in order to release the iron. Some Gram-negative bacteria also secrete extracellular heme-binding proteins called hemophores, which function to sequester heme from the environment. The heme-transport genes are often genetically linked as gene clusters under Fur (ferric uptake regulator) regulation. This review discusses the gene clusters and proteins involved in bacterial heme acquisition, transport and processing processes, with special focus on the heme-coordination, protein structures and mechanisms underlying heme-transport. 相似文献
16.
T. Clement Tirtha Gautam Kang Lee Michael Truex Greg Davis 《Bioremediation Journal》2004,8(1-2):47-64
This article presents an approach for modeling the dissolution process of single component dense non-aqueous phase liquids (DNAPL), such as tetrachloroethene and trichloroethene, in a biologically reactive porous medium. In the proposed approach, the overall transport processes are conceptualized as three distinct reactions. Firstly, the dissolution (or dissolving) process of a residual DNAPL source zone is conceptualized as a mass-transfer limited reaction. Secondly, the contaminants dissolved from the DNAPL source are allowed to partition between sediment and water phases through a rate-limited sorption reaction. Finally, the contaminants in the solid and liquid phases are allowed to degrade by a set of kinetic-limited biological reactions. Although all of these three reaction processes have been researched in the past, little progress has been made towards understanding the combined effects of these processes. This work provides a rigorous mathematical model for describing the coupled effects of these three fundamental reactive transport mechanisms. The model equations are then solved using the general-purpose reactive transport code RT3D (Clement, 1997). 相似文献
17.
Thejani E. Rajapaksa Kaila M. Bennett Mary Hamer Christian Lytle Victor G. J. Rodgers David D. Lo 《The Journal of biological chemistry》2010,285(31):23739-23746
In mucosal tissues, epithelial M cells capture and transport microbes across the barrier to underlying immune cells. Previous studies suggested that high affinity ligands targeting M cells may be used to deliver mucosal vaccines; here, we show that particle composition and dispersion buffer ionic strength can independently influence their uptake in vivo. First, addition of a poloxamer 188 to nanoparticle formulations increased uptake of intranasally administered nanoparticles in vivo, but the effect was dependent on the presence of the M cell-targeting ligand. Second, solvent ionic strength is known to effect electrostatic interactions; accordingly, reduced ionic strength increased the electrostatic potential between the epithelium and the particles. Interestingly, below a critical ionic strength, intranasal particle uptake in vivo significantly was increased even when controlled for osmolarity. Similar results were obtained for uptake of bacterial particles. Surprisingly, at low ionic strength, the specific enhancement effect by the targeting peptide was negligible. Modeling of the electrostatic forces predicted that the enhancing effects of the M cell-targeting ligand only are enabled at high ionic strength, as particle electrostatic forces are reduced through Debye screening. Thus, electrostatic forces can have a dramatic effect on the in vivo M cell particle uptake independent of the action of targeting ligands. Examination of these forces will be helpful to optimizing mucosal vaccine and drug delivery. 相似文献
18.
针对制约植物细胞生物碱释放的生物碱跨膜传递这一物理过程,引入有载体参与的主动运输过程来描述植物细胞生物碱的跨膜传递过程,将Michaelis-Menten酶促反应动力学公式应用于载体转运,建立了植物细胞中产物释放的饱和特性模型。将模型在特定参数下进行积分,对已有的实验现象进行数值模拟,并与实验结果比较表明,所建模型能很好地描述低Pka值生物碱的各种跨膜传递现象,并能同时呈现生物碱跨膜传递的线性特性和饱和特性,从而为长期对立的生物碱跨膜传递的简单扩散观点和主动运输观点的统一提供了理论依据 相似文献
19.
Glew MD Veith PD Peng B Chen YY Gorasia DG Yang Q Slakeski N Chen D Moore C Crawford S Reynolds EC 《The Journal of biological chemistry》2012,287(29):24605-24617
Protein substrates of a novel secretion system of Porphyromonas gingivalis contain a conserved C-terminal domain (CTD) of ~70-80 amino acid residues that is essential for their secretion and attachment to the cell surface. The CTD itself has not been detected in mature substrates, suggesting that it may be removed by a novel signal peptidase. More than 10 proteins have been shown to be essential for the proper functioning of the secretion system, and one of these, PG0026, is a predicted cysteine proteinase that also contains a CTD, suggesting that it may be a secreted component of the secretion system and a candidate for being the CTD signal peptidase. A PG0026 deletion mutant was constructed along with a PG0026C690A targeted mutant encoding an altered catalytic Cys residue. Analysis of clarified culture fluid fractions by SDS-PAGE and mass spectrometry revealed that the CTD was released intact into the surrounding medium in the wild type strain, but not in the PG0026 mutant strains. Western blot experiments revealed that the maturation of a model substrate was stalled at the CTD-removal step specifically in the PG0026 mutants, and whole cell ELISA experiments demonstrated partial secretion of substrates to the cell surface. The CTD was also shown to be accessible at the cell surface in the PG0026 mutants, suggesting that the CTD was secreted but could not be cleaved. The data indicate that PG0026 is responsible for the cleavage of the CTD signal after substrates are secreted across the OM. 相似文献
20.
Michael E. Shea Oscar Juárez Jonathan Cho Blanca Barquera 《The Journal of biological chemistry》2013,288(43):31241-31249
The Na+-pumping NADH:quinone complex is found in Vibrio cholerae and other marine and pathogenic bacteria. NADH:ubiquinone oxidoreductase oxidizes NADH and reduces ubiquinone, using the free energy released by this reaction to pump sodium ions across the cell membrane. In a previous report, a conserved aspartic acid residue in the NqrB subunit at position 397, located in the cytosolic face of this protein, was proposed to be involved in the capture of sodium. Here, we studied the role of this residue through the characterization of mutant enzymes in which this aspartic acid was substituted by other residues that change charge and size, such as arginine, serine, lysine, glutamic acid, and cysteine. Our results indicate that NqrB-Asp-397 forms part of one of the at least two sodium-binding sites and that both size and charge at this position are critical for the function of the enzyme. Moreover, we demonstrate that this residue is involved in cation selectivity, has a critical role in the communication between sodium-binding sites, by promoting cooperativity, and controls the electron transfer step involved in sodium uptake (2Fe-2S → FMNC). 相似文献