首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The flagellar beat of hyperactivated Suncus spermatozoa was analyzed by digital imaging and was compared to that of the nonhyperactivated (activated) spermatozoa in order to examine the function of the accessory fibers during the flagellar beat and the sliding filament mechanism inducing the motility of the hyperactivated spermatozoa. Unusual large and long characteristics of the accessory fibers were involved in generating the gently curved bends and a low beat frequency. Examination of the motility parameters of the flagellar beat of the activated and hyperactivated spermatozoa attached to a slide glass by their heads revealed that there were two beating modes: a frequency-curvature dependent mode in the activated flagellar beat and a nearly constant frequency mode in the hyperactivated flagellar beat. The hyperactivated flagellar beat was characterized by sharp bends in the proximal midpiece and a low beat frequency. The sharp bends in the proximal midpiece were induced by the increase in the total length of the microtubule sliding at the flagellar base. The rate of microtubule sliding (sliding velocity) in the axoneme remained almost constant in the flagellar beat of both the activated and hyperactivated spermatozoa. Comparison of the sliding velocity in Suncus, golden hamster, monkey, and sea urchin sperm flagella with their stiffness suggests that the sliding velocity is determined by the stiffness at the flagellar base and that the same sliding microtubule system functions in both mammalian and echinoderm spermatozoa.  相似文献   

2.
Digital image analysis of the flagellar movements of cynomolgus macaque spermatozoa hyperactivated by caffeine and cAMP was carried out to understand the change in flagellar movements during hyperactivation. The degree of flagellar bending increased remarkably after hyperactivation, especially at the base of the midpiece. Mainly two beating patterns were seen in the hyperactivated monkey sperm flagella: remarkably asymmetrical flagellar bends of large amplitude and relatively symmetrical flagellar bends of large amplitude. The asymmetrical bends were often seen in the early stage of hyperactivation, whereas the symmetrical bends executed nonprogressive, figure-of-eight movement. Beat frequency of the hyperactivated spermatozoa significantly decreased while wavelength of flagellar waves roughly doubled. To determine the conditions under which the axonemes of hyperactivated sperm flagella have asymmetrical or symmetrical bends, the plasma membranes of monkey spermatozoa were extracted with Triton X-100 and motility was reactivated with MgATP(2-) under various conditions. The asymmetrical flagellar bends were brought about by Ca(2+), whereas the symmetrical flagellar bends resulted from low levels of Ca(2+) and high levels of cAMP. Under these conditions, beat frequency and wavelength of flagellar waves of demembranated, reactivated spermatozoa were similar to those of the hyperactivated spermatozoa. These results suggest that during hyperactivation of monkey spermatozoa intracellular Ca(2+) concentrations first rise, and then decrease while cAMP concentrations increase simultaneously.  相似文献   

3.
It is now well understood that ATP-driven active sliding between the doublet microtubules in the sperm axoneme generates flagellar movement. However, much remains to be learned about how this movement is controlled. Detailed analyses of the flagellar beating of the mammalian spermatozoa revealed that there were two beating modes at a constant rate of microtubule sliding: that is, a nearly constant-curvature beating in nonhyperactivated spermatozoa and a nearly constant-frequency beating in hyperactivated spermatozoa. The constant rate of microtubule sliding suggests that the beat frequency and waveform of the flagellar beating are dependently regulated. Comparison of the sliding velocity of several mammalian and sea urchin sperm flagella with their mechanical property clarified that the sliding velocity of the microtubule was determined by the stiffness of the flagellum at its base, and that its relationship was expressed by a logarithmic equation that is similar to the classical force-velocity equation of the muscle contraction. Data from sea urchin spermatozoa also satisfied the equation, suggesting that the same microtubule sliding system functions in both the mammalian and echinoderm spermatozoa.  相似文献   

4.
Caudal epididymal spermatozoa of golden hamsters were incubated in capacitation medium. Their movement patterns changed as they became hyperactivated and underwent the acrosome reaction. To understand the basic mechanism by which changes in movement pattern are brought about, digital image analysis was carried out on the flagellar movements recorded with a video system. The degree of flagellar bending increased with incubation time, especially in the proximal midpiece. The hyperactivated spermatozoa had remarkably asymmetrical flagellar waves of large amplitude because either the bends in the same direction as the hook of the head (referred as the "pro-hook bend") or the bends in the opposite direction to the hook of the head (referred as the "anti-hook bend") extremely increased their curvature; whereas, the acrosome-reacted spermatozoa had relatively symmetrical flagellar waves of large amplitude because both the pro- and anti-hook bends remarkably increased their curvature. Beat frequency significantly decreased while wavelength of flagellar waves increased after hyperactivation and further after the acrosome reaction. These results suggest that both extreme pro- and anti-hook bends are essential in the acrosome-reacted spermatozoa even though beat frequency decreased markedly.  相似文献   

5.
It is well established that the basis for flagellar and ciliary movements is ATP-dependent sliding between adjacent doublet microtubules. However, the mechanism for converting microtubule sliding into flagellar and ciliary movements has long remained unresolved. The author has developed new sperm models that use bull spermatozoa divested of their plasma membrane and midpiece mitochondrial sheath by Triton X-100 and dithiothreitol. These models enable the observation of both the oscillatory sliding movement of activated doublet microtubules and flagellar bend formation in the presence of ATP. A long fiber of doublet microtubules extruded by synchronous sliding of the sperm flagella and a short fiber of doublet microtubules extruded by metachronal sliding exhibited spontaneous oscillatory movements and constructed a one beat cycle of flagellar bending by alternately actuating. The small sliding displacement generated by metachronal sliding formed helical bends, whereas the large displacement by synchronous sliding formed planar bends. Therefore, the resultant waveform is a half-funnel shape, which is similar to ciliary movements.  相似文献   

6.
Asymmetrical bending waves can be obtained by reactivating demembranated sea urchin spermatozoa at high Ca2+ concentrations. Moving-film flash photography shows that asymmetrical flagellar bending waves are associated with premature termination of the growth of the bends in one direction (the reverse bends) while the bends in the opposite direction (the principal bends) grow for one full beat cycle, and with unequal rates of growth of principal and reverse bends. The relative proportions of these two components of asymmetry are highly variable. The increased angle in the principal bend is compensated by a decreased angle in the reverse bend, so that there is no change in mean bend angle; the wavelength and beat frequency are also independent of the degree of asymmetry. This new information is still insufficient to identify a particular mechanism for Ca2+-induced asymmetry. When a developing bend stops growing before initiation of growth of a new bend in the same direction, a modification of the sliding between tubules in the distal portion of the flagellum is required. This modification can be described as a superposition of synchronous sliding on the metachronous sliding associated with propagating bending waves. Synchronous sliding is particularly evident in highly asymmetrical flagella, but is probably not the cause of asymmetry. The control of metachronous sliding appears to be unaffected by the superposition of synchronous sliding.  相似文献   

7.
During capacitation, mammalian spermatozoa gain the ability to penetrate the cumulus cell matrix (CCM). The role of hyperactivated motility for this capacity is uncertain. In the present study, hamster sperm were observed during penetration and progression through the CCM, and flagellar beat patterns were quantitated by characterization of the underlying flagellar bends. Small numbers of sperm were added to cumulus masses slightly compressed on a slide (150 μm depth), and penetration was videorecorded using interference contrast optics. During penetration of the cumulus surface, sperm did not generate the large flagellar bends and asymmetric beats that are hallmarks of hyperactivation in low viscosity media. Instead, they entered slowly using high-frequency, low-amplitude sinusoidal flagellar motions. Within the CCM, sperm continued to move slowly, and they exhibited three distinct patterns of motility. The first was sinusoidal, produced by alternating, propagated bends: principal bends (PB) moved the head away from the beat midline, with the convex edge of the head leading, and reverse bends (RB) had the opposite curvature. The second pattern was asymmetric and sinusoidal: an extreme RB developed in the distal flagellum, was propagated distally, and was followed by a PB of less curvature. The third motility pattern was a hatchet-like stroke of the sperm head which resulted when an extreme, nonpropagated PB developed slowly in the proximal midpiece, and was released rapidly. In this mode there were no reverse bends, and sperm did not progress. There were subpopulations of capacitating sperm in free-swimming medium which had these same bend types and motility patterns, suggesting that qualitative flagellar movement may not change during CCM penetration. Sperm velocity in the CCM was not strongly correlated with flagellar beat kinematics, suggesting local heterogeneity in cumulus mechanical resistance and/or differences in interaction of the matrix with the surfaces of individual sperm. An effective viscosity of the cumulus near its border was estimated to be of the order of 1–4 P.  相似文献   

8.
Hyperactivated motility, a swimming pattern of mammalian sperm in the oviduct, is essential for fertilization in vivo. It is characterized by high-amplitude flagellar waves and, usually, highly asymmetrical flagellar beating. It had been suggested, but not tested, that Ca2+ and cAMP switch on hyperactivation by directly affecting the flagellar axoneme. In this study, the direct affects of these agents on the axoneme were tested by using detergent-demembranated bull sperm. As confirmed by TEM, treatment of sperm with 0.2% Triton X-100 disrupted the plasma, acrosomal, and inner mitochondrial membranes, leaving axonemes intact. In the presence of 2 mM ATP, the percentage of reactivated sperm that were hyperactivated increased to 80% when free Ca2+ was increased from 50 to 400 nM. The effect of the Ca2+ in this range was to increase beat asymmetry by increasing the curvature of the principal bend. No additional increases were observed above 400 nM free Ca2+, but motility was suppressed at 1 mM. The ability of Ca2+ to produce hyperactivation depended on ATP availability, such that more ATP was required to produce the high amplitude flagellar bends characteristic of hyperactivated motility than to produce activated motility. Cyclic AMP was not required for reactivation, nor for hyperactivation. Production of hyperactivated motility also required an alkaline environment (pH 7.9-8.5). These results suggest that, provided sufficient ATP is present and pH is sufficiently alkaline, Ca2+ switches on hyperactivation by enabling curvature of the principal bends to increase.  相似文献   

9.
The mechanism of oscillation in cilia and flagella has been a long-standing mystery. This article raises the possibility of a mechanical explanation based on new findings relating to where in the flagellum microtubule sliding can occur--and where it cannot occur. All theoretical analyses of flagellar bending have until now made the assumption that sliding displacements at the base of the flagellum cannot occur. One consequence of this has been the need to accept that sliding must be transmitted through propagating bends, an idea that has been tolerated even though it becomes paradoxical if bends are the result of resistance to sliding. Our observations, of spermatozoa from the chinchilla, have led us to a contradictory view. We have shown directly, by light microscopy and by two methods of electron microscopy, that basal sliding does occur. Also, evidence from video microscopy indicates that a propagating bend cannot transmit sliding through it. We have analyzed a movement pattern in which the beat frequency increases fourfold in a phasic manner. Our analysis of this suggests that new bends terminate when no further sliding is possible. At this point the bend direction immediately reverses. That is, the flagellar beat frequency increases when there is a limitation to sliding. One can see directly the alternation in basal sliding direction under these circumstances. This suggests a mechanism for the initiation of a new bend in the opposite direction to the bend just completed: we propose that the initiating trigger is the reversal of elastic deformations at the base, which reverses the direction of interdoublet sliding.  相似文献   

10.
Hyperactivation, a swimming pattern of mammalian sperm in the oviduct, is essential for fertilization. It is characterized by asymmetrical flagellar beating and an increase of cytoplasmic Ca(2+). We observed that some mouse sperm swimming in the oviduct produce high-amplitude pro-hook bends (bends in the direction of the hook on the head), whereas other sperm produce high-amplitude anti-hook bends. Switching direction of the major bends could serve to redirect sperm toward oocytes. We hypothesized that different Ca(2+) signaling pathways produce high-amplitude pro-hook and anti-hook bends. In vitro, sperm that hyperactivated during capacitation (because of activation of CATSPER plasma membrane Ca(2+) channels) developed high-amplitude pro-hook bends. The CATSPER activators procaine and 4-aminopyridine (4-AP) also induced high-amplitude pro-hook bends. Thimerosal, which triggers a Ca(2+) release from internal stores, induced high-amplitude anti-hook bends. Activation of CATSPER channels is facilitated by a pH rise, so both Ca(2+) and pH responses to treatments with 4-AP and thimerosal were monitored. Thimerosal triggered a Ca(2+) increase that initiated at the base of the flagellum, whereas 4-AP initiated a rise in the proximal principal piece. Only 4-AP triggered a flagellar pH rise. Proteins were extracted from sperm for examination of phosphorylation patterns induced by Ca(2+) signaling. Procaine and 4-AP induced phosphorylation of proteins on threonine and serine, whereas thimerosal primarily induced dephosphorylation of proteins. Tyrosine phosphorylation was unaffected. We concluded that hyperactivation, which is associated with capacitation, can be modulated by release of Ca(2+) from intracellular stores to reverse the direction of the dominant flagellar bend and, thus, redirect sperm.  相似文献   

11.
Background information. The spermatozoon of the quail (Coturnix coturnix L., var japonica) has a ‘9+2’ flagellum that is unusually long. When it moves in a viscous medium, near to the coverslip, it develops a meander waveform. Because of the high viscosity, the meander bends are static in relation to the field of view; bend propagation is therefore manifest as the forward movement of the flagellum through the meander shape. At the same time, the origin of the oscillation typically shifts proximally in a stepwise fashion. These movements have been analysed in the hope of contributing to the resolution of problems in flagellar mechanics. Results. (1) Meander waves originate from spontaneous sigmoid bend complexes. (2) On a given flagellum, fully developed meander bends are uniform in their large angle, curvature and propagation speed; interbends can vary in length and shape. (3) No intra‐axonemal sliding is transmitted through formed bends; sliding related to new bends is accommodated proximally. (4) Sliding reversal is initiated at a threshold shear angle of approx. 1 rad. (5) The arc wavespeed is the product of the arc wavelength and the beat frequency. (6) Physical obstruction to bend development causes a pause in the oscillation. (7) New bend initiation can thus be dissociated from bend propagation on the distal flagellum. (8) The steps in the forward advance of the oscillation site occur during the early phase of bend growth. Conclusions. (1) The main conclusion is that, in meander waves, the mechanical basis of the oscillation appears to be that the propulsive thrust arising from bend propagation acts as a bending stress to trigger sliding reversal, thus perpetuating the rhythmic beating. (2) Oscillations can originate at any position, provided the position is distal to a location where doublet sliding is restrained. (3) Meander waves are an example of new bend development without ‘paradoxical’ classes of sliding.  相似文献   

12.
We have studied the phase component of flagellar beating by holding the head of a sea urchin sperm in the tip of a sinusoidally vibrating micropipet and then abruptly displacing the pipet laterally at a speed of 2.5 microns/ms for various durations. This rapid displacement of the pipet delayed the initiation of the next bend for as long as the displacement continued, up to a duration of 1 beat cycle, corresponding to a delay of 0.5 beat cycle. At the end of this displacement, the movement of the pipet was stopped completely without resumption of the initial vibration. Analysis of the flagellar waveform showed that immediately when the pipet was stopped, the flagellum started to beat by spontaneously initiating the bend that had been delayed. The flagellum then continued steady-state beating, with normal waveform and a new phase that was independent of the original phase of beating. These data suggest that the information on the phase of beating is located only at the basal end of the flagellum, and not in oscillators distributed along the axoneme. After this information has been lost, the flagellum can resume beating at any arbitrary phase relative to its original phase.  相似文献   

13.
Evidence for the function of hyperactivated motility in sperm   总被引:3,自引:0,他引:3  
After insemination, mammalian sperm undergo a striking change in flagellar beat pattern, termed hyperactivation. In low-viscosity culture medium, nonhyperactivated sperm flagella generate relatively symmetrical, low-amplitude waves, while hyperactivated sperm flagella generate an asymetrical beating pattern that results in nonprogressive movement. Since sperm encounter highly viscous and viscoelastic fluids in the female reproductive tract, the progress of hyperactivated sperm was compared with that of nonhyperactivated and transitional sperm in media of increasing viscosity. Hamster sperm obtained from the caudal epididymis were incubated in a medium that promotes capacitation. After 0, 3, and 4 h of incubation, the majority of the sperm exhibited, respectively, activated, transitional, and hyperactivated motility. At each of these time points, aliquots of sperm were removed from incubation and added to solutions of 0, 5%, 10%, 20%, and 30% Ficoll in medium. Samples containing mostly hyperactivated sperm (4 h) maintained higher swimming and flagellar velocities and were able to generate greater forces in response to increased viscous loading than activated sperm (0 h). Transitional sperm (3 h) showed an intermediate response. The paths of hyperactivated sperm through solutions of 20% and 30% Ficoll were considerably straighter than those made through medium alone. This is the first demonstration that hyperactivation can confer a mechanical advantage upon sperm in the oviduct where they may encounter viscous oviductal fluid and a viscoelastic cumulus matrix.  相似文献   

14.
To understand the mechanism regulating spermatozoa motility, it is important to investigate the mechanism regulating the conversion of microtubule sliding into flagellar bending. Therefore, we analyzed microtubule sliding and its conversion into flagellar bending using a demembranated spermatozoa model in which microtubule sliding and flagellar bending could be analyzed separately by treating the demembranated spermatozoa with and without dithiothreitol, respectively. Using this model, we examined the roles of cAMP and its target molecules in regulating flagellar bending and microtubule sliding. Although flagellar bending did not occur in the absence of cAMP, microtubule extrusion occurred without it, suggesting that cAMP is necessary for the conversion of microtubule sliding into flagellar bending, but not for microtubule sliding itself. The target of cAMP for regulating flagellar bending was not cAMP-dependent protein kinase (PKA), since flagellar bending was still observed in the spermatozoa treated with a PKA-specific inhibitor. Alternatively, the Epac/Rap pathway may be the target. Epac2 and Rap2 were detected in hamster spermatozoa using immunoblotting. Since Rap2 is a GTPase, we investigated the flagellar bending of demembranated spermatozoa treated with GTPgammaS. The treatment markedly increased the beat frequency and bending rate. These results suggest that cAMP activates the Epac/Rap pathway to regulate the conversion of microtubule sliding into flagellar bending.  相似文献   

15.
Flagellar movement of human spermatozoa held by their heads with a micropipette was recorded by means of a video-strobe system. Spermatozoa were studied in normal Hanks' solution, Hanks' solution with increased viscosity, cervical mucus, and hyaluronic acid. When flagellar movement in normal Hanks' solution was observed from the direction parallel to the beating plane, segments of the flagellum in focus did not lie on a straight line but on two diverging dashed lines. The distance between the two dashed lines was about 20% of the bend amplitude in the major beating plane. These observations indicate that flagellar beating of human spermatozoa in normal Hanks' solution is not planar. In contrast, segments of the flagellum in focus lay on a straight line when the spermatozoa were observed in Hanks' solution with increased viscosity, cervical mucus, or hyaluronic acid. In normal Hanks' solution, free swimming spermatozoa rotated constantly around their longitudinal axes with a frequency similar to the beat frequency, whereas little or no rotation of spermatozoa occurred in Hanks' solution with increased viscosity, in cervical mucus, or in hyaluronic acid. We conclude that human spermatozoa in normal Hanks' solution beat with a conical helical waveform having an elliptical cross section, the semiaxes of which have a ratio of 0.2. The three-dimensional geometry of the flagellar movement is responsible for the rotation of the sperm around their longitudinal axes.  相似文献   

16.
Thin section electron micrographs of rapidly fixed Chlamydomonas cells were used to establish a relationship between flagellar bends and orientation of the central pair microtubule complex. Using conditions that preserve flagellar waveforms during both forward swimming (asymmetric bends) and backward swimming (symmetric bends), we found that central pair orientation differs in bent regions and straight regions. During forward swimming, a plane through the two central pair microtubules is parallel to the bend plane throughout principal bends, in both effective stroke and recovery stroke phases of the beat cycle. In these curved segments, the C1 microtubule always faces the outer edge of the curve. This parallel orientation twists in straight regions both proximal and distal to bends. During backward swimming episodes induced by photoshock, when Chlamydomonas flagella beat with principal and reverse bends of similar magnitude, the central pair twists by 180 degrees between successive bends. These observations support a model in which central pair orientation in Chlamydomonas is linked to doublet-specific dynein activation, and bend propagation is linked to rotation of the central pair complex.  相似文献   

17.
Ohmuro J  Mogami Y  Baba SA 《Zoological science》2004,21(11):1099-1108
Transition from immotile to motile flagella may involve a series of states, in which some of regulatory mechanisms underlying normal flagellar movement are working with others being still suppressed. To address ourselves to the study of starting transients of flagella, we analyzed flagellar movement of sea urchin sperm whose motility initiation had been retarded in an experimental solution, so that we could capture the instance at which individual spermatozoa began their flagellar beating. Initially straight and immotile flagella began to shiver at low amplitude, then propagated exclusively the principal bend (P bend), and finally started stable flagellar beating. The site of generation of the P bend in the P-bend propagating stage varied in position in the basal region up to 10 microm from the base, indicating that the ability of autonomous bend generation is not exclusively possessed by the very basal region but can be unmasked throughout a wider region when the reverse bend (R bend) is suppressed. The rate of change in the shear angle, the curvature of the R bend and the frequency and regularity of beating substantially increased upon transition from P-bend propagating to full-beating, while the propagation velocity of bends remained unchanged. These findings indicate that artificially delayed motility initiation may accompany sequential modification of the motile system and that mechanisms underlying flagellar motility can be analyzed separately under experimentally retarded conditions.  相似文献   

18.
Antibodies binding to sea urchin flagellar outer-doublet tubulin have been isolated from rabbit sera by tubulin-affinity chromatography employing electrophoretically purified tubulin as the immobilized substrate. This procedure provides "induced" antitubulin antibody from immune sera and "spontaneous" antitubulin antibody from preimmune sera. These antitubulins were characterized in terms of their specificity, ability to bind to sea urchin axonemes, and effects on the motility of reactivated spermatozoa. Induced antitubulin antibody specifically reduced the bend angle and symmetry of the movement of demembranated reactivated spermatozoa without affecting the beat frequency. At identical concentrations, spontaneous antitubulin had no effect on motility. Affinity-purified induced antitubulins from three other rabbits all gave specific bend-angle inhibition, whereas their corresponding spontaneous antitubulins had no effect on the flagellar movement. The effects of antitubulin on microtubule sliding were examined by observing the sliding disintegration of elastase-digested axonemes induced by MgATP2+-. Affinity-purified induced antitubulin antibody, in quantities sufficient to completely paralyze reactivated flagella, did not inhibit microtubule sliding. The amplitude-inhibiting effect of induced antitubulin on reactivated spermatozoa may be caused by action on a mechanism responsible for controlling flagellar bending rather than by interference with the active sliding process. This is the first report of an antitubulin antibody having an inhibitory activity on microtubule-associated movement.  相似文献   

19.
In order to fertilize, mammalian sperm must hyperactivate. Hyperactivation is triggered by increased flagellar Ca(2+), which switches flagellar beating from a symmetrical to an asymmetrical pattern by increasing bending to one side. Thimerosal, which releases Ca(2+) from internal stores, induced hyperactivation in mouse sperm within seconds, even when extracellular Ca(2+) was buffered with BAPTA to approximately 30 nM. In sperm from CatSper1 or CatSper2 null mice, which lack functional flagellar alkaline-activated calcium currents, 50 microM thimerosal raised the flagellar bend amplitudes from abnormally low levels to normal pre-hyperactivated levels and, in 20-40% of sperm, induced hyperactivation. Addition of 1 mM Ni(2+) diminished the response. This suggests that intracellular Ca(2+) is abnormally low in the null sperm flagella. When intracellular Ca(2+) was reduced by BAPTA-AM in wild-type sperm, they exhibited flagellar beat patterns more closely resembling those of null sperm. Altogether, these results indicate that extracellular Ca(2+) is required to supplement store-released Ca(2+) to produce maximal and sustained hyperactivation and that CatSper1 and CatSper2 are key elements of the major Ca(2+) entry pathways that support not only hyperactivated motility but possibly also normal pre-hyperactivated motility.  相似文献   

20.
Calcium-induced quiescence in reactivated sea urchin sperm   总被引:20,自引:17,他引:3       下载免费PDF全文
Sperm flagella of the sea urchin Tripneustes gratilla beat with asymmetrical bending waves after demembranation with Triton X-100 in the presence of EGTA and reactivation at pH 8.1 with 1 mM ATP in the presence of 2 mM MgSO4. Addition of 0.1--0.2 mM free Ca2+ to these reactivated sperm induces 70--95% of them to become quiescent. This quiescence can be reversed by reduction of the free Ca2% concentration with EGTA, or by dilution to reduce the MgATP2- concentration below 0.3 mM. The quiescent waveform is characterized by a sharp principal bend of approximately 5.6 rad in the proximal region of the flagellum, a slight reverse bend in the midregion that averages approximately 0.3 rad, and a principal bend of approximately 1.1 rad in the tip. The quiescent sperm are highly fragile mechanically, and disruption, including microtubule sliding, occurs spontaneously at a slow rate upon standing or immediately upon gentle agitation. Mild digestion by trypsin causes a gradual appearance of normal, symmetrical flagellar beating. Addition of increasing concentrations of vanadate to quiescent sperm causes a graded decrease in the proximal bend angle, with 50 micrometers vanadate reducing it to approximately 2.6 rad. In the presence of 0.1 mM free Ca2% and 10 micrometers vanadate, a characteristic, crescented stationary bend is induced in the demembranated sperm, without intermediate oscillatory beating, by the addition of either 0.1 or 1 mM ATP. In the absence of vanadate, these two concentrations of ATP produce asymmetric beating and quiescence, respectively. The results support the hypothesis that quiescence in live sperm is induced by an elevated concentration of intracellular Ca2%. In addition, they demonstrate that bending can occur in flagella in which oscillatory beating is inhibited and emphasize the close relationship between asymmetric beating and quiescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号