首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In murine colonic epithelial cells, cell-coat glycoproteins are transported to the cell surface in vesicles that originate at the Golgi apparatus. To determine the role of microtubules in the movement of these vesicles the antimicrotubule agent colchicine was injected into mice at several time intervals prior to sacrifice. In the mice that were treated with colchicine for 4.5 h it was observed that the polarity of the cells was disturbed. The Golgi apparatus and nucleus often appeared interchanged in their positions. The glycoprotein-containing vesicles, normally located apically, were sparse in that location, but abundant near the lateral plasma membranes of the cells at the level of the nucleus and Golgi apparatus. Straining by the periodic acid-chromic acid-silver methenamine technique for glycoproteins clearly revealed the reduction of vesicles apically and accumulation of vesicles laterally. The mechanism responsible for the movement of the vesicles to this location is unclear. It is suggested that the accumulation of vesicles in the lateral region may reflect some hindrance in the fusion of the vesicles with the lateral cell membranes.  相似文献   

2.
Summary The silver methenamine method for the ultrastructural localization of carbohydrates and glycoproteins was applied to the thyroid glands of normal and TSH-treated mice. The majority of the cisternae of the rough endoplasmic reticulum showed a weak, but apparently positive reaction. These findings support the opinion that glycosylation of thyroglobulin occurs initially in the rough endoplasmic reticulum. By this method the Golgi apparatus was observed to display a staining gradient. The intermediate to inner saccules were intensely stained, whereas the outer saccules were not so heavily stained. This phenomenon indicates that the Golgi apparatus has a functional polarity for the addition of carbohydrates to thyroglobulin and other proteins. In the inner and/or the peripheral regions of the Golgi apparatus and in the apical cytoplasm, a large number of globules of various sizes, considered to be colloid droplets, lysosomes and apical secreting vesicles, showed a positive reaction. The luminal colloid was also positive with silver methenamine staining, with almost the same intensity as the globules and vesicles.This study was supported by a grant from the Japan Ministry of Education  相似文献   

3.
DETECTION OF COMPLEX CARBOHYDRATES IN THE GOLGI APPARATUS OF RAT CELLS   总被引:11,自引:17,他引:11       下载免费PDF全文
Two methods used for the electron microscopic detection of glycoproteins were applied to a variety of cell types in the rat; one involved successive treatment of sections with periodic acid, chromic acid, and silver methenamine; and the other, a brief treatment with a chromic acid-phosphotungstic acid mixture. The results obtained with the two methods were identical and, whenever the comparison was possible, similar to those obtained with the periodic acid-Schiff technique of light microscopy. In secretory as well as in nonsecretory cells, parts of the Golgi apparatus are stained. The last saccule on one side of each Golgi stack is strongly reactive (mature face), and the last saccule on the other side shows little or no reactivity (immature face); a gradient of reactivity occurs in between these saccules. The more likely explanation of the increase in staining intensity is that carbohydrate is synthesized and accumulates in saccules as they migrate toward the mature face. In many secretory cells, the mature face is associated with strongly stained secretory granules. Other structures stained are: (1) small vesicles, dense and multivesicular bodies, at least some of which are presumed to be lysosomal in nature; (2) cell coat; and (3) basement membrane. The evidence suggests that the Golgi saccules provide glycoproteins not only for secretion, but also for the needs of the lysosomal system as well as for incorporation into the cell coat and perhaps basement membrane.  相似文献   

4.
Normal human oesophageal epithelium was investigated with the periodic-acid-silver methenamine technique and its variations to demonstrate neutral mucosubstances at the ultrastruct level. The results were compared with the acid phosphotungstic acid method. Neutral mucosubstances were shown in the cell coat and membrane coating granules by both techniques. The silver methods also demonstrated glycogen, the Golgi apparatus and dense bodies. The periodic acid-silver methenamine technique outlined positive material in the intercellular space of the prickle cell layer, but the other silver methods did not.  相似文献   

5.
Summary Normal human oesophageal epithelium was investigated with the periodic acid — silver methenamine technique and its variations to demonstrate neutral mucosubstances at the ultrastructural level. The results were compared with the acid phosphotungstic acid method. Neutral mucosubstances were shown in the cell coat and membrane coating granules by both techniques. The silver methods also demonstrated glycogen, the Golgi apparatus and dense bodies. The periodic acid — silver methenamine technique outlined positive material in the intercellular space of the prickle cell layer, but the other silver methods did not.  相似文献   

6.
A single intravenous injection of L-[3H]fucose, a specific glycoprotein precursor, was given to young 35–45 g rats which were sacrificed at times varying between 2 min and 30 h later. Radioautography of over 50 cell types, including renewing and nonrenewing cells, was carried out for light and electron microscope study. At early time intervals (2–10 min after injection), light microscope radioautography showed a reaction over nearly all cells investigated in the form of a discrete clump of silver grains over the Golgi region. This reaction varied in intensity and duration from cell type to cell type. Electron microscope radioautographs of duodenal villus columnar cells and kidney proximal and distal tubule cells at early time intervals revealed that the silver grains were restricted to Golgi saccules. These observations are interpreted to mean that glycoproteins undergoing synthesis incorporate fucose in the saccules of the Golgi apparatus. Since fucose occurs as a terminal residue in the carbohydrate side chains of glycoproteins, the Golgi saccules would be the site of completion of synthesis of these side chains. At later time intervals, light and electron microscope radioautography demonstrated a decrease in the reaction intensity of the Golgi region, while reactions appeared over other parts of the cells: lysosomes, secretory material, and plasma membrane. The intensity of the reactions observed over the plasma membrane varied considerably in various cell types; furthermore the reactions were restricted to the apical surface in some types, but extended to the whole surface in others. Since the plasma membrane is covered by a "cell coat" composed of the carbohydrate-rich portions of membrane glycoproteins, it is concluded that newly formed glycoproteins, after acquiring fucose in the Golgi apparatus, migrate to the cell surface to contribute to the cell coat. This contribution implies turnover of cell coat glycoproteins, at least in nonrenewing cell types, such as those of kidney tubules. In the young cells of renewing populations, e.g. those of gastro-intestinal epithelia, the new glycoproteins seem to contribute to the growth as well as the turnover of the cell coat. The differences in reactivity among different cell types and cell surfaces imply considerable differences in the turnover rates of the cell coats.  相似文献   

7.
Human blood group A antigenicity of glycoproteins is retained on epon-embedded jejunum sections after glutaraldehyde fixation and osmium treatment. The intracellular location of molecules bearing these determinants was visualized in the four types of epithelial cells of A+ rabbit jejunum sections with immuno-colloidal gold labeling. The brush border membrane and in particular the glycocalyx of absorbing cells as well as the secretory granules of goblet and Paneth cells were heavily labeled. In enteroendocrine cells, the membrane of secretory granules and not their content was lightly labeled. The differential labeling of secretory or membrane bound glycoproteins is accompanied by different labels of the Golgi complex as expected if labeling of the Golgi saccules was due to the presence of glycoproteins in transit. In all cases the label is primarily concentrated in only half the cisternae on the trans side of the Golgi stacks. In absorbing cells, structures have been revealed in the terminal web that could be related to the brush border membrane and consequently implicated in its biogenesis. The fibrillar material of the glycocalyx appears as highly labeled tangled structures which apparently proceed from densely stained "carrier" vesicles arising from the Golgi apparatus. Vesicles fusing at the lower part of microvilli could result of integration of this material into the lightly labeled vesicles strictly found in the terminal web. These last vesicles could also contain newly synthesized brush border hydrolases.  相似文献   

8.
Short-term administration of the glucose analog 5-thio- -glucose to primiparous lactating rats reduced mammary tissue lactose concentrations to half of control levels. Treatment with colchicine alone caused slight reductions in mammary tissue lactose content. These treatments did not alter the morphology or degree of development of rough endoplasmic reticulum or Golgi apparatus, but did cause alterations in secretory vesicles. In mammary tissue from untreated lactating animals, large, swollen secretory vesicles were abundant in apical regions of epithelial cells. After thioglucose administration secretory vesicles in the apical cytoplasm were smaller and were more densely packed with contents. While administration of colchicine alone caused accumulation of large numbers of nearly fully swollen vesicles, treatment with both colchicine and thioglucose induced accumulation of smaller, less fully developed secretory vesicles which contained morphologically recognizable casein micelles. Mammary tissue from late gestation rats was low in lactose; vesicles in this tissue resembled secretory vesicles in tissue from rats treated with thioglucose in that they were small and densely packed. These observations suggest that lactose, an osmoregulator in mammary gland, is transferred from Golgi apparatus to the apical cell surface within secretory vesicles. Lactose appears to be important for secretory vesicle maturation in mammary epithelial cells.  相似文献   

9.
Results of various cytochemical tests demonstrate large deposits of glycogen within the intestinal absorptive cells of Ascaris suum. Carbohydrate material is also associated with the microvilli surface and basal lamella. Staining produced by the periodate-thiocarbohydrazide-osmium procedure was abolished by analine or m-aminophenol. Diastase digestion did not alter the staining on the microvilli surface. Similar results were seen using the silver methenamine procedure. A positive reaction was noted on the microvilli surface, vesicles in both the apical and basal cytoplasm, Golgi apparatus, and basal lamella. Lanthanum nitrate stained the microvilli surface and intercellular spaces between absorptive cells. Alcian blue or cetylpyridinium chloride in combination with lanthanum enhanced the staining produced by lanthanum alone. These results suggest the presence of acidic glycans on both the microvilli surface and basal lamella.  相似文献   

10.
Synopsis The electron microscopic histochemistry of mucosubstances in sigmoidoscopically and microscopically normal rectal biopsies was studied using techniques currently available. The deposition of Alcian Blue and Ruthenium Red and the distribution of Concanavalin A receptors were limited to the epithelial cell borders. Mucosubstances in the fuzzy coat, Golgi apparatus, lysosomes and secretory vesicles were demonstrated by the periodic acid—chromic acid oxidation methods. Glycogen was demonstrated in the epithelium by periodate oxidation methods and the complex cyanide technique. There was little difference in the distribution of mucosubstances in the epithelial cells at any level of the crypts. Phosphotungstic acid staining under controlled conditions gave a similar distribution of mucosubstances to those revealed by the oxidation techniques.  相似文献   

11.
The secretory process for glycoproteins in principal cells of the mouse caput epididymis was studied by electron microscope radioautography at intervals after exposure to [3H] fucose in vitro. The large Golgi apparatus showed very heavy labeling at the initial interval, followed by a steady decline in percent of grains and relative grain concentrations. Conversely, the epididymal lumen and the apical cell surface began low and increased in radioactivity at the 30-min interval. The extensive sparsely granulated endoplasmic reticulum showed modest increases in percent of grains and relative grain concentrations 30 min after administration of the percursor. Subdivision of the sparsely granulated reticulum into "intermediate" profiles (some ribosomes attached to the membranes) and "smooth" profiles (lacking ribosomes) showed that this increase was due to silver grains assigned to the smooth portions. After the initial interval, high relative grain concentrations were calculated for vesicles. The results indicate that glycosylation of epididymal secretory glycoproteins occurs in the Golgi apparatus, which is, therefore, not bypassed as its morphological features had suggested. The kinetics of the secretory process in the principal cells includes 15 to 30 min for synthesis of the polypeptide parts of secretory products and addition of sugars in the Golgi apparatus, and a similar time for subsequent release from the Golgi apparatus, transport to the apical end of the cell and discharge to the lumen. Ribosome-studded (intermediate) portions of the sparsely granulated endoplasmic reticulum are probably involved in synthesis of polypeptide parts of secretory products, while vesicles or smooth portions of the sparsely granulated reticulum may play a role in intracellular transport of glycoproteins.  相似文献   

12.
Oviduct tissue slices were incubated with [3H]-leucine or [3H]-mannose in the presence and absence of tunicamycin, a specific inhibitor of lipid-mediated protein glycosylation. Conditions were established where tunicamycin had maximal effect on [3H]-mannose incorporation (greater than 90% inhibition) but a minimal effect on [3H]-leucine incorporation (less than 10% inhibition) into total TCA-insoluble products. Analysis of incubated tissues by SDS-polyacrylamide gel electrophoresis revealed that in the absence of tunicamycin, [3H]-mannose was incorporated into only a few proteins, of which ovalbumin represented the major radiolabeled component. Tunicamycin markedly reduced the incorporation of [3H]-mannose into ovalbumin and other oviduct glycoproteins. In contrast, analysis by SDS-polyacrylamide gel electrophoresis showed that [3H]-leucine was incorporated into a variety of proteins in the absence of tunicamycin. The radioactivity profile of some of these proteins was shifted toward lower Mr when oviduct slices were incubated in the presence of tunicamycin, with only a minimal decrease in protein labeling. Light microscopic autoradiograms of tissue incubated with [3H]-leucine in either the presence or absence of tunicamycin exhibited extensive labeling of tubular gland and epithelial cells. In the absence of tunicamycin, these cell types also become markedly labeled with [3H]-mannose; however, incorporation of label in both cell types was substantially reduced in the presence of tunicamycin. Qualitatively, labeling of tubular gland cells appeared greater than that of epithelial cells, largely due to the concentration of silver grains over the dense population of secretory vesicles in the tubular gland cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Synopsis The three major types of glycoproteins present in animal cells, that is, the secretory, lysosomal and plasma membrane glycoproteins, were examined with regard to the sites of synthesis of their carbohydrate side chains and to their subsequent migration within cells.The site at which a monosaccharide is added to a growing glycoprotein depends on the position of that monosaccharide in the carbohydrate side-chain. Thus, radiauutography of thyroid cells within minutes of the intravenous injection of labelled mannose, a sugar located near the base of the larger side-chains, reveals that it is incorporated in rough endoplasmic reticulum, whereas the more distally located galactose and fucose are incorporated in the Golgi apparatus. Recently [3H]N-acetylmannosamine, a specific precursor for the terminally located sialic acid residues, was shown to be also added in the Golgi apparatus. Presumably synthesis of glycoproteins is completed in this organelle.Radioautographs of animals sacrificed a few hours after injection of [3H]N-acetylmannosamine show that, in many secretory cells, labelled glycoproteins pass into secretory products. In these cells, as well as in non-secretory cells, the label may also appear within lysosomes and at the cell surface. In the latter site, it is presumably included within the plasma membrane glycoproteins whose carbohydrate side-chains form the cell coat. The continual migration of glycoproteins from Golgi apparatus to cell surface implies turnover of plasma membrane glycoproteins. Radioautographic quantitation of [3H]fucose label at the surface of proximal tubule cells in the kidney of singly-injected adult mice have shown that, after an initial peak, cell surface labelling decreases at a rate indicating a half-life of plasma membrane glycoproteins of about three days.  相似文献   

14.
Glycoproteins were histochemically localized in oxyntic cells of the frog stomach by staining with periodic acid-silver methenamine. Reduction of silver was most intense on (a) the outer aspect of the apical plasmalemma, (b) within the tubular smooth membrane system characteristic of oxyntic cells, and (c) within cisternae and vesicles of the Golgi complex. Other membrane components such as those from the mitochondria, nucleus, junctional complex, lateral and basal cell membranes showed little or no stainability. Gastric mucosal homogenates were fractionated by centrifugation for further morphological and chemical analysis. The staining reaction of the microsomal fraction (40,000 g x 60 min) was similar to that of the tubular membranous components of intact oxyntic cells. Carbohydrate analyses showed that all cell fractions are extremely low in acidic sugars, uronic and sialic acids, while neutral sugars and hexosamines are relatively abundant. The microsomal fraction contains the largest proportion of carbohydrates, ca. 9% of the fat-free dry weight. Another distinguishing feature is that glucosamine is the only detectable hexosamine in the microsomal fraction. These histochemical and chemical data indicate that neutral glycoproteins are associated with membranous components which have been implicated in the process of HCl secretion by oxyntic cells. The staining pattern within the cells supports the hypothesis of interrelationships between the Golgi membranes, tubular smooth membranes, and apical surface membrane.  相似文献   

15.
Histochemical Detection of Carbohydrates of Blastocystis hominis   总被引:1,自引:0,他引:1  
The carbohydrates of Blastocystis hominis were detected by histochemical techniques using light and electron microscopy. B. hominis, fixed with various fixatives, followed by treatment with detergents, were stained with periodic acid-Schiff (PAS) or alcian blue (AB). Intense PAS reactions were observed in cells fixed with glutaraldehyde or 1/2 Karnovsky fixative. The cells fixed with other fixatives showed weak or no reactions with PAS staining. Similar results were seen in the case of AB stain. These results indicated that, depending on the fixative used, B. hominis contained PAS- or AB-reactive carbohydrates. At the electron microscopic level, ultrathin sections of B. hominis were stained with periodic acid methenamine silver (PA-MS) or periodic acid thiocarbohydrazide-silver proteinate (PA-TCH-SP) staining techniques. Intense, positive reactions with PA-MS or PA-TCH-SP were observed on the central vacuole, Golgi apparatus, and cytoplasmic vesicles. The filamentous layer showed moderate reactions with PA-MS, whereas in PA-TCH-SP stain, it was stained more densely. The staining intensity of the central vacuole varied from cell to cell. The presence of membrane fusions of the cytoplasmic vesicles with the central vacuole indicated the accumulation of carbohydrates in the central vacuole.  相似文献   

16.
The Golgi assembly pattern varies among cell types. In fibroblast cells, the Golgi apparatus concentrates around the centrosome that radiates microtubules; whereas in epithelial cells, whose microtubules are mainly noncentrosomal, the Golgi apparatus accumulates around the nucleus independently of centrosome. Little is known about the mechanisms behind such cell type-specific Golgi and microtubule organization. Here, we show that the microtubule minus-end binding protein Nezha/CAMSAP3 (calmodulin-regulated spectrin-associated protein 3) plays a role in translocation of Golgi vesicles in epithelial cells. This function of CAMSAP3 is supported by CG-NAP (centrosome and Golgi localized PKN-associated protein) through their binding. Depletion of either one of these proteins similarly induces fragmentation of Golgi membranes. Furthermore, we find that stathmin-dependent microtubule dynamics is graded along the radial axis of cells with highest activity at the perinuclear region, and inhibition of this gradient disrupts perinuclear distribution of the Golgi apparatus. We propose that the assembly of the Golgi apparatus in epithelial cells is induced by a multi-step process, which includes CAMSAP3-dependent Golgi vesicle clustering and graded microtubule dynamics.  相似文献   

17.
Outer rootcap cells of maize produce large numbers of secretory vesicles that ultimately fuse with the plasma membrane to discharge their product from the cell. As a result of the fusion, these vesicles contribute large quantities of membrane to the cell surface. In the present study, this phenomenon has been investigated using sections stained with phosphotungstic acid at low pH (PACP), a procedure in plant cells that specifically stains the plasma membrane. In the maize root tip, the PACP also stains the membranes of the secretory vesicles derived from Golgi apparatus to about the same density that it stains the plasma membrane. Additionally, the membranes of the secretory vesicles acquire the staining characteristic while still attached to the Golgi apparatus. The staining progresses across the dictyosome from the forming to the maturing pole, thus confirming the marked polarity of these dictyosomes. Interestingly, the PACP staining of Golgi apparatus is confined to the membranes of the secretory vesicles. It is largely absent from the central plates or peripheral tubules and provides an unambiguous example of lateral differentiation of membranes orthogonal to the major polarity axis. In the cytoplasm we could find no vesicles other than secretory vesicles bearing polysaccharide that were PACP positive. Even the occasional coated vesicle seen in the vicinity of the Golgi apparatus did not stain. Thus, if exocytotic vesicles are present in the maize root cap cell, they are formed in a manner where the PACP-staining constituent is not retained by the internalized membrane. The findings confirm dictyosome polarity in the maize root cap, provide evidence for membrane differentiation both across and at right angles to the major polarity axis, and suggest that endocytotic vesicles, if present, exclude the PACP-staining component.  相似文献   

18.
Summary Normal human gastric mucosal cells were examined by light and electron microscopy using lectins as a probe. The ABC method was used with biotinylated lectins for light microscopy and HRP-labeled lectins for electron microscopy. The human gastric mucosal cells revealed specific binding patterns for each lectin by light microscopy. Among the lectins tested, in particular, DBA gave a characteristic pattern. It specifically stained the supranuclear region of surface epithelial cells and the perinuclear region of parietal cells. By electron microscopy, the stacked cisternae and the vesicles of the Golgi apparatus of the surface epithelial cells were positive for the DBA staining. These results show that the DBA-positive supranuclear region observed by light microscopy corresponds to the Golgi apparatus. In the parietal cells, DBA, RCA and ConA bound to the intracellular secretory canaliculi which are invaginations of the cell membrane running around the nucleus in the cytoplasm. Therefore, the tubular perinuclear positive region observed by light microscopy corresponds to the membranes of the intracellular secretory canaliculi. In addition, the ConA reagent stained the endoplasmic reticulum, Golgi apparatus, nuclear envelope, and cell membrane of the parietal cell, which explains the diffuse cytoplasmic staining observed at the light microscopic level with this lectin. Lectins have proved to be very useful for the evaluation of in situ cytochemical aspects of the glycoconjugates characteristic to human gastric mucosal cells.  相似文献   

19.
Summary The effect of tunicamycin, which is known to inhibit the synthesis of N-linked glycoprotein, on the duodenal absorptive epithelial cell of the mouse was studied in thin-section as well as freeze-fracture images. In tunicamycin-treated animals, the apical part of the epithelial cell was almost negative to the PAS reaction. Moreover, microvilli of the epithelial cell became shorter, larger in diameter, and fewer in number in tunicamycin-treated mice. In addition, freeze-fracture images revealed that the population density of membrane particles of the microvillus membrane was lowered by tunicamycin treatment. These results may indicate that the inhibition of synthesis of N-linked glycoprotein causes a decrease of membrane supply from the Golgi apparatus to the apical plasma membrane.This study was supported by grants from the Ministry of Education, Science and Culture.  相似文献   

20.
Pretreatment with the nucleoside antibiotic tunicamycin was found to protect cultured renal epithelial cells in the face of ATP-depletion, in large part by preserving junctional and cellular architecture. Tunicamycin pretreatment of Madin-Darby canine kidney cells not only preserved E-cadherin staining at the plasma membrane, but also inhibited ATP-depletion-mediated E-cadherin degradation. Electron microscopic analysis, together with the preservation of the staining patterns of the tight junction marker ZO-1, the apical/microvillar marker gp135, and basolateral marker Na/K-ATPase suggested that tunicamycin preserved the junctional complex and the polarized epithelial cell phenotype. Tunicamycin pretreatment also prevented reductions in the filamentous actin content of the cells, as well as preserving Golgi architecture. Moreover, a quantitative measure of cell adhesion demonstrated that tunicamycin pretreatment resulted in a fivefold increase in attachment of cells to the substratum (77% versus 16%). Thus, pretreatment with tunicamycin protects polarized epithelial cells from ischemic injury through the preservation of epithelial cell architecture, intercellular junctions, and cell-substratum interactions in the setting of intracellular ATP-depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号