首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In adenovirus-infected cells, the epidermal growth factor receptor (EGF-R) is internalized from the cell surface via endosomes and is degraded, and the E3 10,400-dalton protein (10.4K protein) is required for this effect (C. R. Carlin, A. E. Tollefson, H. A. Brady, B. L. Hoffman, and W. S. M. Wold, Cell 57:135-144, 1989). We now report that both the E3 10.4K and E3 14.5K proteins are required for this down-regulation of EGF-R in adenovirus-infected cells. Down-regulation of cell surface EGF-R was demonstrated by results from several methods, namely the absence of EGF-R autophosphorylation in an immune complex kinase assay, the inability to iodinate EGF-R on the cell surface, the formation of endosomes containing EGF-R as detected by immunofluorescence, and the degradation of the metabolically [35S]Met-labeled fully processed 170K species of EGF-R. No effect on the initial synthesis of EGF-R was observed. This down-regulation was ascribed to the 10.4K and 14.5K proteins through the analysis of cells infected with rec700 (wild-type), dl748 (10.4K-, 14.5K+), or dl764 (10.4K+, 14.5K-) or coinfected with dl748 plus dl764. Further evidence that the 10.4K and 14.5K proteins function in concert was obtained by demonstrating that the 10.4K protein was coimmunoprecipitated with the 14.5K protein by using three different antisera to the 14.5K protein, strongly implying that the 10.4K and 14.5K proteins exist as a complex. Together, these results indicate that the 10.4K and 14.5K proteins function as a complex to stimulate endosome-mediated internalization and degradation of EGF-R in adenovirus-infected cells.  相似文献   

3.
A 14,700-kDa protein (14.7K) encoded by the E3 region of adenovirus has been shown to protect adenovirus-infected mouse C3HA cells from lysis by tumor necrosis factor (TNF) (L. R. Gooding, L. W. Elmore, A. E. Tollefson, H. A. Brady, and W. S. M. Wold, Cell 53:341-346, 1988). These infected cells are sensitized to TNF by expression of the adenovirus E1A proteins (P. Duerksen-Hughes, W. S. M. Wold, and L. R. Gooding, J. Immunol. 143:4193-4200, 1989). In this study we show that 14.7K suppresses TNF cytolysis independently of adenovirus infection. Mouse C3HA and C127 cells were transfected with the 14.7K gene controlled by the mouse metallothionein promoter, and permanent 14.7K-expressing cell lines were tested for sensitivity to TNF cytolysis. Transfected cells which were sensitized to TNF either by inhibitors of protein synthesis, microfilament-destabilizing agents, or adenovirus infection were found to be resistant to TNF cytolysis. Two monoclonal antibodies were isolated and used to quantitate 14.7K in transfected and infected cells. Enzyme-linked immunosorbent assay (ELISA) analysis with these monoclonal antibodies and 14.7K immunoblots showed that 14.7K expression can be induced with cadmium in C3HA and C127 transfectants. The 14.7K induction correlated with a dose-dependent decrease in sensitivity to TNF cytotoxicity. The 14.7K protein does not substantially alter cell surface TNF receptor numbers or affinity on C3HA mouse fibroblasts, as determined by Scatchard analysis of 125I-TNF binding. The 14.7K protein also does not alter TNF signal transduction in general, because TNF induction of cell surface class I major histocompatibility complex molecules on 14.7K transfectants was unmodified. Our findings indicate that the adenovirus 14.7K protein functions as a specific inhibitor of TNF cytolysis in the absence of other adenovirus proteins and thus is a unique tool to study the mechanism of TNF cytotoxicity.  相似文献   

4.
We have reported that the E3 14,700-dalton protein (E3 14.7K protein) protects adenovirus-infected mouse C3HA fibroblasts against lysis by tumor necrosis factor (TNF) (L. R. Gooding, L. W. Elmore, A. E. Tollefson, H. A. Brady, and W. S. M. Wold, Cell 53:341-346, 1988). We have also observed that the E1B 19K protein protects adenovirus-infected human but not mouse cells against TNF lysis (L. R. Gooding, L. Aquino, P. J. Duerksen-Hughes, D. Day, T. M. Horton, S. Yei, and W. S. M. Wold, J. Virol. 65:3083-3094, 1991). We now report that, in the absence of E3 14.7K, the E3 10.4K and E3 14.5K proteins are both required to protect C127 as well as several other mouse cell lines against TNF lysis. The 14.7K protein can also protect these cells from TNF in the absence of the 10.4K and 14.5K proteins. This protection by the 10.4K and 14.5K proteins was not observed in the C3HA cell line. These conclusions are based on 51Cr release assays of cells infected with virus E3 mutants that express the 14.7K protein alone, that express both the 10.4K and 14.5K proteins, and that delete the 14.7K in combination with either the 10.4K or 14.5K protein. The 10.4K protein was efficiently coimmunoprecipitated together with the 14.5K protein by using an antiserum to the 14.5K protein, suggesting that the 10.4K and 14.5K proteins exist as a complex in the infected mouse cells and consistent with the notion that they function in concert. Considering that three sets of proteins (E3 14.7K, E1B 19K, and E3 10.4K/14.5K proteins) exist in adenovirus to prevent TNF cytolysis of different cell types, it would appear that TNF is a major antiadenovirus defense of the host.  相似文献   

5.
Previous studies with adenovirus mutants have indicated that a 10,400-molecular-weight (10.4K) protein predicted to be coded by an open reading frame in region E3 of adenovirus functions to down regulate the epidermal growth factor receptor (C. R. Carlin, A. E. Tollefson, H. A. Brady, B. L. Hoffman, and W. S. M. Wold, Cell 57:135-144, 1989). We now demonstrate that the 10.4K protein is in fact synthesized in cells infected by group C adenoviruses. This was done by immunoprecipitation of 10.4K from cells infected by a variety of E3 mutants, using antisera against three different synthetic peptides corresponding to the predicted 10.4K sequence. The 10.4K protein was translated primarily from E3 mRNA f, as indicated by cell-free translation of mRNA purified by hybridization from cells infected with an RNA processing mutant that synthesizes predominantly mRNA f. The 10.4K protein was overproduced or underproduced in vivo, respectively, by mutants that overproduce or underproduce E3 mRNA f, also indicating that the 10.4K protein is translated primarily from mRNA f. The 10.4K protein migrated as two bands with apparent molecular weights of 16,000 and 11,000 (10 to 18% gradient gels); both bands contained 10.4K epitopes, as shown by Western blot (immunoblot). Only the 16K band was obtained by cell-free translation, suggesting that the 16K protein is the precursor to the 11K protein. The 10.4K protein is a membrane protein, as shown by cell fractionation experiments and as predicted from its sequence. The predicted 10.4K sequence as well as a putative N-terminal signal sequence and 30-residue transmembrane domain are conserved in adenovirus types 2 and 5 (group C) and in types 3, 7, and 35 (group B).  相似文献   

6.
Human group C adenoviruses cause an acute infection in respiratory epithelia and establish a long-term or persistent infection, possibly in lymphocytes. The mechanism by which this persistence is maintained is unknown; however, it would require that persistently infected lymphocytes not be deleted. The adenovirus genome encodes proteins that prevent the immune system from eliminating the virus-infected cell, including the E3 receptor internalization and degradation (RID) complex. The RID complex prevents death of infected cells by blocking apoptosis initiated through death domain-containing receptors of the tumor necrosis factor receptor (TNFR) superfamily, including TNFR1 (L. R. Gooding, T. S. Ranheim, A. E. Tollefson, L. Aquino, P. Duerksen-Hughes, T. M. Horton, and W. S. Wold, J. Virol. 65:4114-4123, 1991), TNF-related apoptosis-inducing ligand receptors (TRAIL-R1 and -R2) (C. A. Benedict, P. S. Norris, T. I. Prigozy, J. L. Bodmer, J. A. Mahr, C. T. Garnett, F. Martinon, J. Tschopp, L. R. Gooding, and C. F. Ware, J. Biol. Chem. 276:3270-3278, 2001; A. E. Tollefson, K. Toth, K. Doronin, M. Kuppuswamy, O. A. Doronina, D. L. Lichtenstein, T. W. Hermiston, C. A. Smith, and W. S. Wold, J. Virol. 75:8875-8887, 2001), and Fas (J. Shisler, C. Yang, B. Walter, C. F. Ware, and L. R. Gooding, J. Virol. 71:8299-8306, 1997). Here, we test the ability of RID to protect human lymphocytes from apoptosis induced by ligation of Fas, a mechanism important for regulating lymphocyte populations. Using a retrovirus expressing RID to infect six human lymphocyte cell lines, we found that RID functions in the absence of other viral proteins to downregulate surface Fas on some, but not all, cell lines. Total cellular levels of Fas decrease as measured by Western blotting, and this loss of Fas correlates with protection from apoptosis induced by ligation of Fas in every cell line tested. Although in some cases, RID causes loss of only a fraction of surface Fas, the presence of RID completely blocks the immediate events downstream of Fas ligation (i.e., Fas-FADD association and caspase-8 cleavage) in susceptible cell lines. Nonetheless, the ability of RID to block Fas signaling is independent of the Fas signaling pathway used (type I or type II). Interestingly, among the four T-cell lines tested, RID caused loss of Fas in the two T-cell lines bearing a relatively immature phenotype, while having no activity in T cells with mature phenotypes. Collectively, these data suggest that RID functions to prevent apoptosis of some human lymphocytes by internalizing surface Fas receptors. It is possible that the expression of RID facilitates long-term infection by preventing Fas-mediated deletion of persistently infected lymphocytes.  相似文献   

7.
A 14.7-kilodalton protein (14.7K protein) encoded by the E3 region of group C adenoviruses has been shown to protect virus-infected fibroblasts from lysis by tumor necrosis factor (TNF) (L.R. Gooding, L.W. Elmore, A.E. Tollefson, H.A. Brady, and W.S.M. Wold, Cell 53:341-346, 1988). In this study we show that adenoviruses of other groups are also protected from TNF-induced cytolysis. Representative serotypes of groups A, B, D, and E produce a protein analogous to the 14.7K protein found in human group C adenoviruses. Deletion of this protein in group C viruses permits virus infection to induce cellular susceptibility to TNF killing. As with group C adenoviruses, cells infected with wild-type adenoviruses of other serotypes are not killed by TNF and are protected from lysis induced by TNF plus cycloheximide. However, cells are susceptible to TNF-induced lysis when infected with adenovirus type 4 mutants from which the 14.7K gene has been deleted. Although all known adenovirus serotypes infect epithelial cells, adenoviruses cause several diseases with various degrees of pathogenesis. Our findings suggest that the 14.7K protein provides a function required for the in vivo cytotoxicity of many adenoviruses independent of the site of infection or degree of pathogenesis.  相似文献   

8.
The E3 regions of adenovirus types 2 and 5, respectively, are known to synthesize proteins of 19,000 Mr (19K) and 11.6K, but information regarding the identity and characterization of other potential E3 proteins encoded by the six remaining open reading frames (ORFs) is lacking. In this study, we show that the last ORF of region E3, which encodes a 14.7K protein, is expressed in adenovirus-infected cells. This information was largely derived from analysis of an E3 deletion mutant (H2dl801) in which an extensive deletion (1,939 base pairs) was found to eliminate all ORFs except for two proteins of 12.5K and 14.7K. The 14.7K protein was translated from RNA isolated from H2dl801-infected cells that had been hybridization selected to E3 DNA; hybridization-selected RNA from wild-type adenovirus type 5-infected cells translated both the 19K and the 14.7K proteins. Moreover, an antiserum directed against a bacterial 14.7K fusion protein (A. E. Tollefson and W. S. M. Wold, J. Virol. 62:33-39, 1988) immunoprecipitated the 14.7K translation product synthesized by wild-type and mutant H2dl801 adenovirus mRNAs.  相似文献   

9.
The small guanosine triphosphatase Rab7 regulates late endocytic trafficking. Rab7-interacting lysosomal protein (RILP) and oxysterol-binding protein–related protein 1L (ORP1L) are guanosine triphosphate (GTP)–Rab7 effectors that instigate minus end–directed microtubule transport. We demonstrate that RILP and ORP1L both interact with the group C adenovirus protein known as receptor internalization and degradation α (RIDα), which was previously shown to clear the cell surface of several membrane proteins, including the epidermal growth factor receptor and Fas (Carlin, C.R., A.E. Tollefson, H.A. Brady, B.L. Hoffman, and W.S. Wold. 1989. Cell. 57:135–144; Shisler, J., C. Yang, B. Walter, C.F. Ware, and L.R. Gooding. 1997. J. Virol. 71:8299–8306). RIDα localizes to endocytic vesicles but is not homologous to Rab7 and is not catalytically active. We show that RIDα compensates for reduced Rab7 or dominant-negative (DN) Rab7(T22N) expression. In vitro, Cu2+ binding to RIDα residues His75 and His76 facilitates the RILP interaction. Site-directed mutagenesis of these His residues results in the loss of RIDα–RILP interaction and RIDα activity in cells. Additionally, expression of the RILP DN C-terminal region hinders RIDα activity during an acute adenovirus infection. We conclude that RIDα coordinates recruitment of these GTP-Rab7 effectors to compartments that would ordinarily be perceived as early endosomes, thereby promoting the degradation of selected cargo.  相似文献   

10.
We have previously isolated from bull testis three proteins of molecular mass 31, 33, and 58 kDa that we have tentatively characterized as high affinity Z-DNA-binding proteins. This inference was based on their preferential binding to brominated poly(dG-dC).poly(dG-dC) in Z-form as opposed to the unbrominated polynucleotide in B-form (Gut, S. H., Bischoff, M., Hobi, R., and Kuenzle, C. C. (1987) Nucleic Acids Res. 15, 9691-9705). By partial amino acid sequencing we have provisionally identified the 31- and 33-kDa proteins as members of the high mobility group 2 and 1 protein families, respectively, whereas the 58-kDa protein has so far remained unidentified (Christen, Th., Bischoff, M., Hobi, R., and Kuenzle, C. C. (1990) FEBS Lett. 267, 139-141). In the present study, we have critically reassessed the binding specificity of these three proteins by using more natural Z- and B-DNA ligands. As such we chose supercoiled and relaxed DNA minicircles containing a d(CG)7 insert in the Z- and B-conformation, respectively. Filter binding tests and gel retardation assays performed with these ligands showed that the three testis proteins either do not discriminate between Z- and B-DNA (31- and 33-kDa proteins) or even have a preference for B-DNA (58-kDa protein). Therefore, we question the validity of using brominated poly(dG-dC).poly(dG-dC) as an indicator of Z-DNA binding.  相似文献   

11.
The interleukin-1 receptor antagonist (IL-1ra) inhibits the binding of interleukin-1 (IL-1) to T-cell lines possessing the type I IL-1 receptor; evidence has been published (Carter, D. B., Deibel, M. R. J., Dunn, C. J., Tomich, C. S., Laborde, A. L., Slightom, J. L., Berger, A. E., Bienkowski, M. J., Sun, F. F., McEwan, R. N., Harris, P. K. W., Yem, A. W., Waszak, G. A., Chosay, J. G., Sieu, L. C., Hardee, M. M., Zurcher-Neely, H. A., Reardon, I. M., Heinrickson, R. L., Truesdell, S. E., Shelly, J. A., Eessalu, T. E., Taylor, B. M., and Tracey, D. E. (1990) Nature 344, 633-638; Hannum, C. H., Wilcox, C. J., Arend, W. P., Joslin, F. G., Dripps, D. J., Heimdal, P. L., Armes, L. G., Sommer, A., Eisenberg, S. P., and Thompson, R. C. (1990) Nature 343, 336-340) that IL-Ira does not bind to the type II IL-1 receptor (IL-1RtII). In this study we examined the ability of human recombinant IL-1ra to block the binding of IL-1 to the IL-1RtII on human polymorphonuclear leukocytes (PMN) and Raji human B-lymphoma cells. The binding of 125I-IL-1 beta to PMN was competively inhibited by IL-1ra. IL-1 beta was more potent in inhibiting the binding of 125I-IL-1 beta than IL-1ra. Incubating PMN with 125I-IL-1ra in the presence of increasing concentrations of IL-1 beta or IL-1ra showed that IL-1 beta was an approximately 40-fold more potent inhibitor of binding of 125I-IL-1ra than unlabeled IL-1ra. The IL-1ra was approximately 500-fold less potent in inhibiting the binding of 125I-IL-1 alpha than IL-1 alpha. IL-1ra was also able to competitively inhibit binding of 125I-IL-1 beta to Raji cells. PMN or Raji cells were also incubated with 125I-IL-1 in the absence or presence of IL-1 or IL-1ra. After cross-linking of IL-1 to cells followed by specific immunoprecipitation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a band at 85 kDa corresponding to the 68-kDa IL-1RtII. However, in the presence of an excess of either unlabeled IL-1 or IL-1ra, the 85-kDa IL-1.IL-1RtII complex was not present. These findings demonstrate that the IL-1ra recognizes and blocks IL-1 binding to the IL-1RtII.  相似文献   

12.
Fatty acid-binding proteins (FABPs) were purified from the kidneys of female and male rats and characterized by primary structure and histological distribution in the kidney. Two FABPs (14 and 15.5 kDa) were found in male rat kidney cytosol whereas only 14-kDa FABP could be recognized in female rat kidneys throughout the purification steps. The amino acid sequence of the 14-kDa FABP was identical to that of rat heart FABP deduced from the cDNA sequence (Heuckeroth, R. O., Birkenmeier, E. H., Levin, M. S., and Gordon, J. I. (1987) J. Biol. Chem. 262, 9709-9717). Structural analysis of the male-specific 15.5-kDa FABP identified this second FABP as a proteolytically modified form of alpha 2u-globulin, an 18.7-kDa major urinary protein of adult male rats (Unterman, R. D., Lynch, K. R., Nakhasi, H. L., dolan, K. P., Hamilton, J. W., Cohn, D. V., and Feigelson, P. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 3478-3482) which shares a common ancestry with a number of hydrophobic ligand-binding proteins such as serum retinol-binding proteins. Immunohistochemical investigation disclosed that heart-type FABP (14-kDa FABP) is localized in the cytoplasm of the epithelia of the distal tubules in both male and female rat kidneys whereas 15.5-kDa FABP immunostaining was observed predominantly in the endosomes or lysosomes of proximal tubules in male rat kidneys. These results suggest strongly the functional divergence of two FABPs in the rat kidney.  相似文献   

13.
The human cytomegalovirus (HCMV) XbaI E cloned DNA fragment of approximately 20 kilobases can complement an adenovirus mutant (dl312) defective in the E1a viral gene product (D. J. Spector and M. J. Tevethia, Virology 151:329-338, 1986). This viral DNA fragment contains three immediate-early (IE) genes between 0.709 and 0.751 map units (M. F. Stinski, D. R. Thomsen, R. M. Stenberg, and L. C. Goldstein, J. Virol. 46:1-14, 1983). Two of the IE genes, IE1 and IE2, were isolated and tested for a role in regulating viral gene expression. Since HCMV early and late promoters require additional characterization, the chloramphenicol acetyl transferase (cat) gene, driven by the adenovirus E2 promoter, was used as an indicator of gene expression. cat expression from this heterologous viral promoter was shown to be stimulated by HCMV at early times after infection. The IE1 gene product did not function independently in activating this promoter. The IE2 gene products could independently stimulate the expression of a plasmid of a plasmid when the cat gene was placed downstream of the inducible E2 promoter (E2CAT). Five proteins of different sizes have been predicted to originate from IE2, depending on mRNA splicing. The protein products specified by the IE2 gene were characterized with an antibody to a synthetic peptide according to the open reading frame of exon 2. Three of the five proteins are encoded by exon 2. Three viral proteins of 82, 54, and 28 kilodaltons (kDa) were detected. The exons contained in the region designated as IE2a have open reading frames that could code for two of the smaller proteins of 27 and 30 kDa. This region, when driven by the HCMV enhancer, could independently stimulate gene expression from E2CAT to a high level. A plasmid with the HCMV enhancer upstream of exons, that could code for the HCMV IE2 proteins of 48 and 51 kDa, as well as 27- and 30-kDa proteins, also stimulated E2CAT expression but at a lower level. The activity of this plasmid was augmented by the IE1 gene product, despite the fact that the latter gene product alone was inactive. It is proposed that the HCMV IE region 2 gene products are involved in the regulation of viral or host cell promoters either independently or in combination with other HCMV IE proteins.  相似文献   

14.
Calsenilin is a member of the recoverin family of neuronal calcium-binding proteins that we have previously shown to interact with presenilin 1 (PS1) and presenilin 2 (PS2) holoproteins. The expression of calsenilin can regulate the levels of a proteolytic product of PS2 (Buxbaum, J. D., Choi, E. K., Luo, Y., Lilliehook, C., Crowley, A. C., Merriam, D. E., and Wasco, W. (1998) Nat. Med. 4, 1177-1181) and reverse the presenilin-mediated enhancement of calcium signaling (Leissring, M. A., Yamasaki, T. R., Wasco, W., Buxbaum, J. D., Parker, I., and LaFerla, F. M. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 8590-8593). Here, we have used cultured mammalian cells that transiently or stably express calsenilin to extend the characterization of calsenilin and of the calsenilin-PS2 interaction. We have found that calsenilin has the ability to interact with endogenous 25-kDa C-terminal fragment (CTF) that is a product of regulated endoproteolytic cleavage of PS2 and that the presence of the N141I PS2 mutation does not significantly alter the interaction of calsenilin with PS2. Interestingly, when the 25-kDa PS2 CTF and the 20-kDa PS2 CTF are both present, calsenilin preferentially interacts with the 20-kDa CTF. Increases in the 20-kDa fragment are associated with the presence of familial Alzheimer's disease-associated mutations (Kim, T., Pettingell, W. H., Jung, Y., Kovacs, D. M., and Tanzi, R. E. (1997) Science 277, 373-376). However, the finding that the production of the 20-kDa fragment is regulated by the phosphorylation of PS2 (Walter, J., Schindzielorz, A., Grunberg, J., and Haass, C. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 1391-1396) suggests that it is a regulated physiological event that also occurs in the absence of the familial Alzheimer's disease-associated mutations in PS2. Finally, we have demonstrated that calsenilin is a substrate for caspase-3, and we have used site-directed mutagenesis to map the caspase-3 cleavage site to a region that is proximal to the calcium binding domain of calsenilin.  相似文献   

15.
The pyruvate dehydrogenase complex (mPDC) from potato (Solanum tuberosum cv. Romano) can be disassociated in 1 M NaCl and 0.1 M glycine into a large dihydrolipoamide acetyltransferase (E2) complex and smaller pyruvate dehydrogenase (E1) and dihydrolipoamide dehydrogenase (E3) complexes. The E2 complex consists of 55 and 78-kDa polypeptides which are reversibly radiolabelled to a similar degree in the intact mPDC by [2-14C]pyruvate. Affinity-purified antibodies against the 55-kDa protein do not cross-react with the 78-kDa protein and the two proteins show different peptide patterns following partial proteolysis. The 78 and 55-kDa proteins are present in approximately equal abundance in the E2 complex and incorporate a similar amount of [14C] on incubation with [2-14C]pyruvate. Native mPDC and the E2 complex have sedimentation coefficients of 50S and 30S, respectively. Titration of electro-eluted polypeptides against the intact mPDC and E2 complex revealed that each mg of mPDC contains 0.4 mg of E1, 0.4 mg of E2 and 0.2 mg of E3. Labelling of partially purified mPDC from potato, pea, cauliflower, maize and barley, with [2-14C]pyruvate, suggest that a 78-kDa acetylatable protein is only found in the dicotyledonous species, while all plant species tested contained a smaller 52-60 kDa acetylatable protein.  相似文献   

16.
The primary structure of rat liver xanthine dehydrogenase (EC 1.1.1.204) was determined by sequence analysis of cDNA and purified enzyme. The enzyme consists of 1,319 amino acid residues with a calculated molecular mass of 145,034 Da, including initiation methionine, and is homologous to the previously reported Drosophila melanogaster enzyme (Lee, C. S., Curtis, D., McCarron, M., Love, C., Gray, M., Bender, W., and Chovnick, A. (1987) Genetics 116, 55-66; Keith, T. P., Riley, M. A., Kreitman, M., Lewontin, R. C., Curtis, D., and Chambers, G. (1987) Genetics 116, 67-73) with an identity of 52%. The enzyme exists originally as the NAD-dependent type in a freshly prepared sample. When the purified NAD-dependent type enzyme was digested with trypsin, it cleaved into three fragments with molecular masses of 20, 40, and 85 kDa and was irreversibly converted to the O2-dependent type. Comparison of the amino-terminal sequences of the three peptide fragments with the cDNA-deduced sequence reveals that the 20-, 40-, and 85-kDa peptide fragments correspond residues to 1-184, 185-539, and 540-1319 of the enzyme, respectively. Comparison of the 5'-p-fluorosulfonylbenzoyladenosine-labeled peptide sequence of the chicken enzyme (Nishino, T., and Nishino, T. (1989) J. Biol. Chem. 264, 5468-5473) reveals that the NAD binding site is associated with the 40-kDa fragment portion of the enzyme. Hydropathy analysis around the cysteine residues suggests that the 2Fe/2S sites are associated with the 20-kDa fragment portion of the enzyme.  相似文献   

17.
B Happ  J Li    W Doerfler 《Journal of virology》1991,65(1):89-97
We have previously demonstrated that five open reading frames exist in the nucleotide sequence of the 81.2- to 85.0-map-unit (m.u.) segment of plaque isolate E of Autographa californica nuclear polyhedrosis virus (AcNPV) DNA. The corresponding polypeptides are 9.8, 12.1, 36.6, 25.0, and 48.2 kDa in size (C. Oellig, B. Happ, T. Müller, and W. Doerfler, J. Virol. 63:1494, 1989), and we have investigated whether these proteins can be translated in infected cells. On subfragments of this viral DNA segment, mRNAs were selected from AcNPV-infected Spodoptera frugiperda insect cells at different times postinfection (p.i.). The in vitro translation of these RNAs in a rabbit reticulocyte-derived cell-free translation system yielded polypeptides of approximately 10 to 11, 12 to 14, 28, 36 to 38, and 48 to 50-kDa which were commensurate in size with the theoretically expected values. mRNAs for the 28- and 48- to 50-kDa proteins were identified by their translation products at 6 h p.i., and mRNAs for the 10- to 11-, 12- to 14-, and 36- to 38-kDa proteins were identified by their translation products at 12 h p.i. We constructed an AcNPV recombinant which carried in its polyhedrin gene the 3.9-kbp EcoRI-HindIII (81.8 to 84.8 m.u.) subfragment of the EcoRI J segment. Nucleotide sequence determinations revealed that the intact polyhedrin promoter lay adjacent to the additional 81.8- to 84.8-m.u. fragment in this recombinant. In S. frugiperda cells, which were infected with the recombinant AcNPV, a protein of 36 to 38 kDa was detected at 44 h p.i. in larger amounts than after infection with the nonrecombinant virus. However, there was no evidence for larger amounts of RNA derived from the 81.8- to 84.8-m.u. fragment in recombinant-infected cells. Recombinant-infected cells lacked the polyhedrin polypeptide. The synthesis of the 36- to 38-kDa polypeptide in recombinant- or AcNPV-E-infected S. frugiperda cells could be demonstrated by immunoprecipitation experiments. Peculiarly, this polypeptide was present in the cytoplasm as a 64-kDa glycoprotein. These data corroborate the notion that at least some of the open reading frames encoded in the 81.2- to 85.0-m.u. segment of AcNPV can be expressed in S. frugiperda cells.  相似文献   

18.
To characterize envelope proteins encoded by the chloroplast genome, envelopes were isolated from Chlamydomonas reinhardtii cells labeled with [35S] sulfate while blocking synthesis by cytoplasmic ribosomes. One and two-dimensional gel electrophoresis of envelopes and fluorography revealed four highly labeled proteins. Two with masses of 29 and 30 kDa and pI 5.5 were absent from the stroma and thylakoid fractions, while the others at 54 kDa, pI 5.2 and 61 kDa, pI 5.4 were detected there in smaller amounts. The 29- and 30-kDa proteins were associated with outer envelope membranes separated from inner envelope membranes after chloroplast lysis in hypertonic solution. A 32-kDa protein not labeled by [35S]sulfate was found exclusively in the inner membrane fraction, suggesting the existence of a phosphate translocator in C. reinhardtii. To identify envelope proteins exposed on the chloroplast surface, isolated active chloroplasts were surface-labeled with 125I and lactoperoxidase. The 54-kDa, pI 5.2 protein as well as a protein corresponding to either of the 29- or 30-kDa proteins described above were among the labeled components. These results show that envelope proteins of C. reinhardtii are encoded by the chloroplast genome and two are located on the outer envelope membranes.  相似文献   

19.
L K Frankel  T M Bricker 《Biochemistry》1992,31(45):11059-11064
The structural organization of photosystem II proteins has been investigated by use of the amino group-labeling reagent N-hydroxysuccinimidobiotin (NHS-biotin) and calcium chloride-washed photosystem II membranes. We have previously shown that the presence of the extrinsic, manganese-stabilizing protein on photosystem II membranes prevents the modification of lysyl residues located on the chlorophyll protein CPa-1 (CP-47) by NHS-biotin [Bricker, T. M., Odom, W. R., & Queirolo, C. B. (1988) FEBS Lett. 231, 111-117]. Upon removal of the manganese-stabilizing protein by calcium chloride-washing, CPa-1 can be specifically modified by treatment with NHS-biotin. Preparative quantities of biotinylated CPa-1 were subjected to chemical cleavage with cyanogen bromide. Two major biotinylated peptides were identified with apparent molecular masses of 11.8 and 15.7 kDa. N-terminal sequence analysis of these peptides indicated that the 11.8-kDa peptide was 232G-330M and that the 15.7-kDa peptide was 360P-508V. The 15.7-kDa CNBr peptide was subjected to limited tryptic digestion. The two smallest tryptic fragments identified migrated at apparent molecular masses of 9.1 (nonbiotinylated) and 7.5 kDa (biotinylated). N-terminal sequence analysis and examination of the predicted amino acid sequences of these peptides suggest that the 9.1-kDa fragment was 422R-508V and that the 7.5-kDa fragment was 360P-421A. These results strongly suggest that two NHS-biotinylated domains, 304K-321K and 389K-419K, become exposed on CPa-1 when the manganese-stabilizing protein is removed by CaCl2 treatment. Both of these domains lie in the large extrinsic loop E of CPa-1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号