首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T M Lohman  W Bujalowski 《Biochemistry》1988,27(7):2260-2265
We have examined the binding of the oligonucleotide dT (pT)34 to the Escherichia coli SSB protein as a function of NaCl and MgCl2 concentration (25 degrees C, pH 8.1) by monitoring the quenching of the intrinsic protein fluorescence. We find two binding sites for dT(pT)34 per single strand binding (SSB) protein tetramer, with each site possessing widely different affinities depending on the salt concentration. At 200 mM NaCl, we observe nearly stoichiometric binding of dT(pT)34 to both binding sites within the SSB tetramer, although a difference in the affinities is still apparent. However, when the NaCl concentration is lowered, the overall affinity of dT(pT)34 for the second site on the SSB tetramer decreases dramatically. At 1.5 mM NaCl, only a single molecule of dT(pT)34 can bind per SSB tetramer, even with a 10-fold molar excess of dT(pT)34. MgCl2 is effective at 100-fold lower concentrations than NaCl in promoting the binding of the second molecule of dT(pT)34. This binding behavior reflects an intrinsic property of the SSb tetramer, since it is also observed upon binding of smaller oligonucleotides, and the simplest explanation is that a salt-dependent negative cooperativity exists between DNA binding sites within the SSB tetramer. This phenomenon is also responsible for the transition between the two SSB-single strand (ss) polynucleotide binding modes that cover 35 and 56 nucleotides per tetramer [Bujalowski, W., & Lohman, T. M. (1986) Biochemistry 25, 7799-7802]. Extreme negative cooperativity stabilizes the (SSB)35 binding mode, in which the SSB tetramer binds tightly to ss DNA with only two of its subunits while the other two subunits remain unligated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The co-operative nature of the binding of the Escherichia coli single strand binding protein (SSB) to single-stranded nucleic acids has been examined over a range of salt concentrations (NaCl and MgCl2) to determine if different degrees of binding co-operativity are associated with the two SSB binding modes that have been identified recently. Quantitative estimates of the binding properties, including the co-operativity parameter, omega, of SSB to single-stranded DNA and RNA homopolynucleotides have been obtained from equilibrium binding isotherms, at high salt (greater than or equal to 0.2 M-NaCl), by monitoring the fluorescence quenching of the SSB upon binding. Under these high salt conditions, where only the high site size SSB binding mode exists (65 +/- 5 nucleotides per tetramer), we find only moderate co-operativity for SSB binding to both DNA and RNA, (omega = 50 +/- 10), independent of the concentration of salt. This value for omega is much lower than most previous estimates. At lower concentrations of NaCl, where the low site size SSB binding mode (33 +/- 3 nucleotides/tetramer) exists, but where SSB affinity for single-stranded DNA is too high to estimate co-operativity from classical binding isotherms, we have used an agarose gel electrophoresis technique to qualitatively examine SSB co-operativity with single-stranded (ss) M13 phage DNA. The apparent binding co-operativity increases dramatically below 0.20 M-NaCl, as judged by the extremely non-random distribution of SSB among the ssM13 DNA population at low SSB to DNA ratios. However, the highly co-operative complexes are not at equilibrium at low SSB/DNA binding densities, but are formed only transiently when SSB and ssDNA are directly mixed at low concentrations of NaCl. The conversions of these metastable, highly co-operative SSB-ssDNA complexes to their equilibrium, low co-operativity form is very slow at low concentrations of NaCl. At equilibrium, the SSB-ssDNA complexes seem to possess the same low degree of co-operativity (omega = 50 +/- 10) under all conditions tested. However, the highly co-operative mode of SSB binding, although metastable, may be important during non-equilibrium processes such as DNA replication. The possible relation between the two SSB binding modes, which differ in site size by a factor of two, and the high and low co-operativity complexes, which we report here, is discussed.  相似文献   

3.
We have extended our investigations of the multiple binding modes that form between the Escherichia coli single strand binding (SSB) protein and single-stranded DNA (Lohman, T. M. & Overman, L. B. (1985) J. Biol. Chem. 260, 3594-3603; Bujalowski, W. & Lohman, T. M. (1986) Biochemistry 25, 7799-7802) by examining the effects of anions, pH, BaCl2, and protein binding density on the transitions among these binding modes. "Reverse" titrations that monitor the quenching of the intrinsic tryptophan fluorescence of the SSB protein upon addition of poly(dT) have been used to measure the apparent site size of the complex at 25 degrees C in pH 8.1 and 6.9 as a function of NaF, NaCl, NaBr, and MgCl2 concentrations. Under all conditions in which "reverse" titrations were performed, we observe three distinct binding modes with site sizes of 35 +/- 2, 56 +/- 3, and 65 +/- 3 nucleotides/SSB tetramer; however, the transitions among the three binding modes are strongly dependent upon both the cation and anion valence, type, and concentration as well as the pH. A net uptake of both cations and anions accompanies the transitions from the (SSB)35 to the (SSB)56 binding mode at pH 6.9, whereas at pH 8.1 this transition is anion-independent, and only a net uptake of cations occurs. The transition from the (SSB)56 to the (SSB)65 binding mode is dependent upon both cations and anions at both pH 6.9 and 8.1 (25 degrees C), and a net uptake of both cations and anions accompanies this transition. We have also examined the transitions by monitoring the change in the sedimentation coefficient of the SSB protein-poly(dT) complex as a function of MgCl2 concentration (20 degrees C, pH 8.1) and observe an increase in s20,w, which coincides with the increase in apparent site size of the complex, as measured by fluorescence titrations. The frictional coefficient of the complex decreases by a factor of two in progressing from the (SSB)35 to the (SSB)65 binding mode, indicating a progressive compaction of the complex throughout the transition. The transition between the (SSB)35 and the (SSB)56 complex is dependent on the protein binding density, with the lower site size (SSB)35 complex favored at higher binding density. These results indicate that the transitions among the various SSB protein-single-stranded DNA binding modes are complex processes that depend on a number of solution variables that are thermodynamically linked.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The binding properties of the Escherichia coli encoded single strand binding protein (SSB) to a variety of synthetic homopolynucleotides, as well as to single stranded M13 DNA, have been examined as a function of the NaCl concentration (25.0 degrees C, pH 8.1). Quenching of the intrinsic tryptophan fluorescence of the SSB protein by the nucleic acid is used to monitor binding. We find that the site size (n) for binding of SSB to all single stranded nucleic acids is quite dependent on the NaCl concentration. For SSB-poly(dT), n = 33 +/- 3 nucleotides/tetramer below 10 mM NaCl and 65 +/- 5 nucleotides/tetramer above 0.20 M NaCl (up to 5 M). Between 10 mM and 0.2 M NaCl, the apparent site size increases continuously with [NaCl]. The extent of quenching of the bound SSB fluorescence by poly(dT) also displays two-state behavior, 51 +/- 3% quenching below 10 mM NaCl and 83 +/- 3% quenching at high [NaCl] (greater than 01.-0.2 M NaCl), which correlates with the observed changes in the occluded site size. On the basis of these observations as well as the data of Krauss et al. (Krauss, G., Sindermann, H., Schomburg, U., and Maass, G. (1981) Biochemistry 20, 5346-5352) and Chrysogelos and Griffith (Chrysogelos, S., and Griffith, J. (1982) Proc. Natl. Acad. Sci. U. S. A. 79,5803-5807) we propose a model in which E. coli SSB binds to single stranded nucleic acids in two binding modes, a low salt mode (n = 33 +/- 3), referred to as (SSB)33, in which the nucleic acid interacts with only two protomers of the tetramer, and one at higher [NaCl], n = 65 +/- 5, (SSB)65, in which the nucleic acid interacts with all 4 protomers of the tetramer. At intermediate NaCl concentrations a mixture of these two binding modes exists which explains the variable site sizes and other apparent discrepancies previously reported for SSB binding. The transition between the two binding modes is reversible, although the kinetics are slow, and it is modulated by NaCl concentrations within the physiological range. We suggest that SSB may utilize both binding modes in its range of functions (replication, recombination, repair) and that in vivo changes in the ionic media may play a role in regulating some of these processes.  相似文献   

5.
T F Wei  W Bujalowski  T M Lohman 《Biochemistry》1992,31(26):6166-6174
The Escherichia coli single-strand binding (SSB) protein is an essential protein involved in DNA replication, recombination, and repair processes. The tetrameric protein binds to ss nucleic acids in a number of different binding modes in vitro. These modes differ in the number of nucleotides occluded per SSB tetramer and in the type and degree of cooperative complexes that are formed with ss DNA. Although it is not yet known whether only one or all of these modes function in vivo, based on the dramatically different properties of the SSB tetramer in these different ss DNA binding modes, it has been suggested that the different modes may function selectively in replication, recombination, and/or repair. The transitions between these different modes are very sensitive to solution conditions, including salt (concentration, as well as cation and anion type), pH, and temperature. We have examined the effects of multivalent cations, principally the polyamine spermine, on the SSB-ss poly(dT) binding mode transitions and find that the transition from the (SSB)35 to the (SSB)56 binding mode can be induced by micromolar concentrations of polyamines as well as the inorganic cation Co(NH3)6(3+). Furthermore, these multivalent cations, as well as Mg2+, induce the binding mode transition by binding cooperatively to the SSB-poly(dT) complexes. These observations are interesting in light of the fact that polyamines, such as spermidine, are part of the ionic environment in E. coli and hence these cations are likely to affect the distribution of SSB-ss DNA binding modes in vivo.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
Kumaran S  Kozlov AG  Lohman TM 《Biochemistry》2006,45(39):11958-11973
We have examined the single-stranded DNA (ssDNA) binding properties of the Saccharomyces cerevisiae replication protein A (scRPA) using fluorescence titrations, isothermal titration calorimetry, and sedimentation equilibrium to determine whether scRPA can bind to ssDNA in multiple binding modes. We measured the occluded site size for scRPA binding poly(dT), as well as the stoichiometry, equilibrium binding constants, and binding enthalpy of scRPA-(dT)L complexes as a function of the oligodeoxynucleotide length, L. Sedimentation equilibrium studies show that scRPA is a stable heterotrimer over the range of [NaCl] examined (0.02-1.5 M). However, the occluded site size, n, undergoes a salt-dependent transition between values of n = 18-20 nucleotides at low [NaCl] and values of n = 26-28 nucleotides at high [NaCl], with a transition midpoint near 0.36 M NaCl (25.0 degrees C, pH 8.1). Measurements of the stoichiometry of scRPA-(dT)L complexes also show a [NaCl]-dependent change in stoichiometry consistent with the observed change in the occluded site size. Measurements of the deltaH(obsd) for scRPA binding to (dT)L at 1.5 M NaCl yield a contact site size of 28 nucleotides, similar to the occluded site size determined at this [NaCl]. Altogether, these data support a model in which scRPA can bind to ssDNA in at least two binding modes, a low site size mode (n = 18 +/- 1 nucleotides), stabilized at low [NaCl], in which only three of its oligonucleotide/oligosaccharide binding folds (OB-folds) are used, and a higher site size mode (n = 27 +/- 1 nucleotides), stabilized at higher [NaCl], which uses four of its OB-folds. No evidence for highly cooperative binding of scRPA to ssDNA was found under any conditions examined. Thus, scRPA shows some behavior similar to that of the E. coli SSB homotetramer, which also shows binding mode transitions, but some significant differences also exist.  相似文献   

8.
Escherichia coli single-stranded (ss)DNA binding (SSB) protein binds ssDNA in multiple binding modes and regulates many DNA processes via protein-protein interactions. Here, we present direct evidence for fluctuations between the two major modes of SSB binding, (SSB)(35) and (SSB)(65) formed on (dT)(70), with rates of interconversion on time scales that vary as much as 200-fold for a mere fourfold change in NaCl concentration. Such remarkable electrostatic effects allow only one of the two modes to be significantly populated outside a narrow range of salt concentration, providing a context for precise control of SSB function in cellular processes via SSB expression levels and interactions with other proteins. Deletion of the acidic C terminus of SSB, the site of binding of several proteins involved in DNA metabolism, does not affect the strong salt dependence, but shifts the equilibrium towards the highly cooperative (SSB)(35) mode, suggesting that interactions of proteins with the C terminus may regulate the binding mode transition and vice versa. Single molecule analysis further revealed a novel low abundance binding configuration and provides a direct demonstration that the SSB-ssDNA complex is a finely tuned assembly in dynamic equilibrium among several well-defined structural and functional states.  相似文献   

9.
The Escherichia coli single-stranded DNA binding protein (SSB) binds selectively to single-stranded (ss) DNA intermediates during DNA replication, recombination and repair. Each subunit of the homo-tetrameric protein contains a potential ssDNA binding site, thus the protein can bind to ssDNA in multiple binding modes, one of which is the (SSB)(65) mode, in which a 65 nucleotide stretch of ssDNA interacts with and wraps around all four subunits of the tetramer. Previous stopped-flow kinetic studies of (SSB)(65) complex formation using the oligodeoxynucleotide, (dT)70, were unable to resolve the initial binding step from the rapid wrapping of ssDNA around the tetramer. Here we report a laser temperature-jump study with resolution in the approximately 500 ns to 4 ms time range, which directly detects these ssDNA wrapping/unwrapping steps. Biphasic time courses are observed with a fast phase that is concentration-independent and which occurs on a time-scale of tens of microseconds, reflecting the wrapping/unwrapping of ssDNA around the SSB tetramer. Analysis of the slower binding phase, in combination with equilibrium binding and stopped-flow kinetic studies, also provides evidence for a previously undetected intermediate along the pathway to forming the (SSB)(65) complex.  相似文献   

10.
Escherichia coli single-strand (ss) DNA binding protein (SSB) is an essential protein that binds ssDNA intermediates formed during genome maintenance. SSB homotetramers bind ssDNA in two major modes, differing in occluded site size and cooperativity. The (SSB)35 mode in which ssDNA wraps, on average, around two subunits is favored at low [NaCl] and high SSB/DNA ratios and displays high unlimited, nearest-neighbor cooperativity forming long protein clusters. The (SSB)65 mode, in which ssDNA wraps completely around four subunits of the tetramer, is favored at higher [NaCl] (>200 mM) and displays limited low cooperativity. Crystal structures of E. coli SSB and Plasmodium falciparum SSB show ssDNA bound to the SSB subunits (OB folds) with opposite polarities of the sugar phosphate backbones. To investigate whether SSB subunits show a polarity preference for binding ssDNA, we examined EcSSB and PfSSB binding to a series of (dT)70 constructs in which the backbone polarity was switched in the middle of the DNA by incorporating a reverse-polarity (RP) phosphodiester linkage, either 3′-3′ or 5′-5′. We find only minor effects on the DNA binding properties for these RP constructs, although (dT)70 with a 3′-3′ polarity switch shows decreased affinity for EcSSB in the (SSB)65 mode and lower cooperativity in the (SSB)35 mode. However, (dT)70 in which every phosphodiester linkage is reversed does not form a completely wrapped (SSB)65 mode but, rather, binds EcSSB in the (SSB)35 mode with little cooperativity. In contrast, PfSSB, which binds ssDNA only in an (SSB)65 mode and with opposite backbone polarity and different topology, shows little effect of backbone polarity on its DNA binding properties. We present structural models suggesting that strict backbone polarity can be maintained for ssDNA binding to the individual OB folds if there is a change in ssDNA wrapping topology of the RP ssDNA.  相似文献   

11.
Single-stranded DNA-binding protein (SSB) plays an important role in DNA metabolism, such as in DNA replication, repair, and recombination, and is essential for cell survival. We characterized the single-stranded DNA (ssDNA)-binding properties of Pseudomonas aeruginosa PAO1 SSB (PaSSB) by using fluorescence quenching measurements and electrophoretic mobility shift analysis (EMSA). Analysis of purified PaSSB by gel filtration chromatography revealed a stable tetramer in solution. In fluorescence titrations, PaSSB bound 22–32 nucleotides (nt) per tetramer depending on salt concentration. Using EMSA, we characterized the stoichiometry of PaSSB complexed with a series of ssDNA homopolymers, and the size of the binding site was determined to be 29 ± 1 nt. Furthermore, EMSA results indicated that the dissociation constants of PaSSB for the first tetramer were less than those for the second tetramer. On the basis of these biophysical analyses, the ssDNA binding mode of PaSSB is expected to be noncooperative.  相似文献   

12.
A G Kozlov  T M Lohman 《Biochemistry》1999,38(22):7388-7397
Isothermal titration calorimetry (ITC) was used to test the hypothesis that the relatively small enthalpy change (DeltaHobs) and large negative heat capacity change (DeltaCp,obs) observed for the binding of the Escherichia coli SSB protein to single-stranded (ss) oligodeoxyadenylates result from the temperature-dependent adenine base unstacking equilibrium that is thermodynamically coupled to binding. We have determined DeltaH1,obs for the binding of 1 mole of each of dT(pT)34, dC(pC)34, and dA(pA)34 to the SSB tetramer (20 mM NaCl at pH 8.1). For dT(pT)34 and dC(pC)34, we found large, negative values for DeltaH1,obs of -75 +/- 1 and -85 +/- 2 kcal/mol at 25 degrees C, with DeltaCp,obs values of -540 +/- 20 and -570 +/- 30 cal mol-1 K-1 (7-50 degrees C), respectively. However, for SSB-dA(pA)34 binding, DeltaH1,obs is considerably less negative (-14 +/- 1 kcal/mol at 25 degrees C), even becoming positive at temperatures below 13 degrees C, and DeltaCp,obs is nearly twice as large in magnitude (-1180 +/- 40 cal mol-1 K-1). These very different thermodynamic properties for SSB-dA(pA)34 binding appear to result from the fact that the bases in dA(pA)34 are more stacked at any temperature than are the bases in dC(pC)34 or dT(pT)34 and that the bases become unstacked within the SSB-ssDNA complexes. Therefore, the DeltaCp,obs for SSB-ssDNA binding has multiple contributions, a major one being the coupling to binding of a temperature-dependent conformational change in the ssDNA, although SSB binding to unstacked ssDNA still has an "intrinsic" negative DeltaCp,0. In general, such temperature-dependent changes in the conformational "end states" of interacting macromolecules can contribute significantly to both DeltaCp,obs and DeltaHobs.  相似文献   

13.
The Escherichia coli wild-type single strand binding (SSB) protein is a stable tetramer that binds to single-stranded (ss) DNA in its role in DNA replication, recombination and repair. The ssb-1 mutation, a substitution of tyrosine for histidine-55 within the SSB-1 protein, destabilizes the tetramer with respect to monomers, resulting in a temperature-sensitive defect in a variety of DNA metabolic processes, including replication. Using quenching of the intrinsic SSB-1 tryptophan fluorescence, we have examined the equilibrium binding of the oligonucleotide, dT(pT)15, to the SSB-1 protein in order to determine whether a ssDNA binding site exists within individual SSB-1 monomers or whether the formation of the SSB tetramer is necessary for ssDNA binding. At high SSB-1 protein concentrations, such that the tetramer is stable, we find that four molecules of dT(pT)15 bind per tetramer in a manner similar to that observed for the wild-type SSB tetramer; i.e. negative co-operativity is observed for ssDNA binding to the SSB-1 protomers. As a consequence of this negative co-operativity, binding is biphasic, with two molecules of dT(pT)15 binding to the tetramer in each phase. However, the intrinsic binding constant, K16, for the SSB-1 protomer-dT(pT)15 interaction is a factor of 3 lower than for the wild-type protomer interaction and the negative co-operativity parameter, sigma 16, is larger in the case of the SSB-1 tetramer, indicating a lower degree of negative co-operativity. At lower SSB-1 concentrations, SSB-1 monomers bind dT(pT)15 without negative co-operativity; however, the intrinsic affinity of dT(pT)15 for the monomer is a factor of approximately 10 lower than for the protomer (50 mM-NaCl, pH 8.1, 25 degrees C). Therefore, an individual SSB-1 monomer does possess an independent ssDNA binding site; hence formation of the tetramer is not required for ssDNA binding, although tetramer formation does increase the binding affinity significantly. These data also show that the negative co-operativity among ssDNA binding sites within an SSB tetramer is an intrinsic property of the tetramer. On the basis of these studies, we discuss a modified explanation for the temperature-sensitivity of the ssb-1 phenotype.  相似文献   

14.
When E. coli single-stranded DNA binding protein (SSB) coats single-stranded DNA (ssDNA) in the presence of 1 mM MgCl2 it inhibits the subsequent binding of recA protein, whereas SSB binding to ssDNA in 12 mM MgCl2 promotes the binding of recA protein. These two conditions correspond respectively to those which produce 'smooth' and 'beaded' forms of ssDNA-SSB filaments. By gel filtration and immunoprecipitation we observed active nucleoprotein filaments of recA protein and SSB on ssDNA that contained on average 1 monomer of recA protein per 4 nucleotides and 1 monomer of SSB per 20-22 nucleotides. Filaments in such a mixture, when digested with micrococcal nuclease produced a regular repeating pattern, approximately every 70-80 nucleotides, that differed from the pattern observed when only recA protein was bound to the ssDNA. We conclude that the beaded ssDNA-SSB nucleoprotein filament readily binds recA protein and forms an intermediate that is active in the formation of joint molecules and can retain substantially all of the SSB that was originally bound.  相似文献   

15.
We have purified and characterized a single-stranded DNA binding protein (N4 SSB) induced after coliphage N4 infection. It has a monomeric molecular weight of 31,000 and contains 10 tyrosine and 1-2 tryptophan amino acid residues. Its fluorescence spectrum is dominated by the tyrosine residues, and their fluorescence is quenched when the protein binds single-stranded DNA. Fluorescence quenching was used as an assay to quantitate binding of the protein to single-stranded nucleotides. The N4 single-stranded DNA binding protein binds cooperatively to single-stranded nucleic acids and binds single-stranded DNA more tightly than RNA. The binding involves displacement of cations from the DNA and anions from the protein. The apparent binding affinity is very salt-dependent, decreasing as much as 1,000-fold for a 10-fold increase in NaCl concentration. The degree of cooperativity (omega) is relatively independent of salt concentration. At 37 degrees C in 0.22 M NaCl, the protein has an intrinsic binding constant for M13 viral DNA of 3.8 x 10(4) M-1, a cooperativity factor omega of 300, and binding site size of 11 nucleotides per monomer. The protein lowers the melting point of poly(dA.dT).poly(dA-dT) by greater than 60 degrees C but cannot lower the melting transition or assist in the renaturation of natural DNA. N4 single-stranded DNA binding protein enhances the rate of DNA synthesis catalyzed by the N4 DNA polymerase by increasing the processivity of the N4 DNA polymerase and melting out hairpin structures that block polymerization.  相似文献   

16.
Binding of the single-stranded DNA-binding protein (SSB) of Escherichia coli to single-stranded (ss) polynucleotides produces characteristic changes in the absorbance (OD) and circular dichroism (CD) spectra of the polynucleotides. By use of these techniques, complexes of SSB protein and poly(rA) were shown to display two of the binding modes reported by Lohman and Overman [Lohman, T.M., & Overman, L. (1985) J. Biol. Chem. 260, 3594-3603]. The circular dichroism spectra of the "low salt" (10 mM NaCl) and "high salt" (greater than 50 mM NaCl) binding mode are similar in shape, but not in intensity. SSB binding to poly(rA) yields a complexed CD spectrum that shares several characteristics with the spectra obtained for the binding of AdDBP, GP32, and gene V protein to poly(rA). We therefore propose that the local structure of the SSB-poly(rA) complex is comparable to the structures proposed for the complexes of these three-stranded DNA-binding proteins with DNA (and RNA) and independent of the SSB-binding mode. Electric field induced birefringence experiments were used to show that the projected base-base distance of the complex is about 0.23 nm, in agreement with electron microscopy results. Nevertheless, the local distance between the successive bases in the complex will be quite large, due to the coiling of the DNA around the SSB tetramer, thus partly explaining the observed CD changes induced upon complexation with single-stranded DNA and RNA.  相似文献   

17.
18.
Bacteria encode homooligomeric single-stranded (ss) DNA-binding proteins (SSBs) that coat and protect ssDNA intermediates formed during genome maintenance reactions. The prototypical Escherichia coli SSB tetramer can bind ssDNA using multiple modes that differ by the number of bases bound per tetramer and the magnitude of the binding cooperativity. Our understanding of the mechanisms underlying cooperative ssDNA binding by SSBs has been hampered by the limited amount of structural information available for interfaces that link adjacent SSB proteins on ssDNA. Here we present a crystal structure of Bacillus subtilis SsbA bound to ssDNA. The structure resolves SsbA tetramers joined together by a ssDNA “bridge” and identifies an interface, termed the “bridge interface,” that links adjacent SSB tetramers through an evolutionarily conserved surface near the ssDNA-binding site. E. coli SSB variants with altered bridge interface residues bind ssDNA with reduced cooperativity and with an altered distribution of DNA binding modes. These variants are also more readily displaced from ssDNA by RecA than wild-type SSB. In spite of these biochemical differences, each variant is able to complement deletion of the ssb gene in E. coli. Together our data suggest a model in which the bridge interface contributes to cooperative ssDNA binding and SSB function but that destabilization of the bridge interface is tolerated in cells.  相似文献   

19.
Single-stranded DNA-binding protein (SSB) plays an important role in DNA metabolism, such as DNA replication, repair, and recombination, and is essential for cell survival. We characterized the single-stranded DNA (ssDNA)-binding properties of Salmonella enterica serovar Typhimurium LT2 SSB (StSSB) by using fluorescence quenching measurements and electrophoretic mobility shift analysis (EMSA). Analysis of purified StSSB by gel filtration chromatography showed a stable tetramer in solution. In fluorescence titrations, StSSB bound to 21–38 nucleotides (nt) per tetramer depending on the salt concentration. Using EMSA, we characterized the stoichiometry of StSSB complexed with a series of ssDNA homopolymers, and the size of the binding site was determined to be 22 ± 1 nt. Furthermore, EMSA results indicated that the dissociation constants of StSSB for the first tetramer were less than that for the second tetramer. On the basis of these biophysical analyses, the ssDNA binding-mode of StSSB is expected to be noncooperative.  相似文献   

20.
The Escherichia coli single strand binding (SSB) protein is an essential protein required for DNA replication and involved in recombination and a number of repair processes. It is a stable homotetramer in solution; however the ssb-1 mutation (His-55 to Tyr) destabilizes the tetramer with respect to monomers and this defect seems to explain the observed phenotype (Williams, K. R., Murphy, J. B., and Chase, J. W. (1984) J. Biol. Chem. 259, 11804-11811). We report a quantitative study of the SSB-1 monomer-tetramer equilibrium in vitro as a function of temperature, pH, NaCl, MgCl2, urea, and guanidine hydrochloride concentrations. The self-assembly equilibrium was monitored by the increase in intrinsic protein fluorescence anisotropy accompanying the formation of the tetramer. The experimental isotherms indicate that SSB-1 dimers are not highly populated at equilibrium, hence the formation of the tetramer is well-described as a one-step association of four monomers. At 25 degrees C, pH 8.1, the monomer concentration for 50% tetramer dissociation is (MT)1/2 = 0.87 microM, corresponding to a monomer-tetramer equilibrium constant, KT = 3 +/- 1 x 10(18) M-3. The tetramerization constant, KT, is highly dependent upon temperature and pH, with delta H0 = -51 +/- 7 kcal/mol (pH 8.1) and delta H0 = -37 +/- 5 kcal/mol (pH 6.9). There is no effect of NaCl on the monomer-tetramer association in the range from 0.20 to 1.0 M; however, MgCl2 decreases the stability of the SSB-1 tetramer. In the presence of high concentrations of the single-stranded oligonucleotide, dT(pT)15, the tetramerization constant is slightly increased indicating that binding of the oligonucleotide to the SSB-1 monomer promotes the assembly process, although not dramatically. The large negative delta H0 that is associated with formation of the tetramer provides a likely explanation for the temperature sensitivity of the ssb-1 mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号