首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TRIM5α has been shown to be a major postentry determinant of the host range for gammaretroviruses and lentiviruses and, more recently, spumaviruses. However, the restrictive potential of TRIM5α against other retroviruses has been largely unexplored. We sought to determine whether or not Mason-Pfizer monkey virus (M-PMV), a prototype betaretrovirus isolated from rhesus macaques, was sensitive to restriction by TRIM5α. Cell lines from both Old World and New World primate species were screened for their susceptibility to infection by vesicular stomatitis virus G protein pseudotyped M-PMV. All of the cell lines tested that were established from Old World primates were found to be susceptible to M-PMV infection. However, fibroblasts established from three New World monkey species specifically resisted infection by this virus. Exogenously expressing TRIM5α from either tamarin or squirrel monkeys in permissive cell lines resulted in a block to M-PMV infection. Restriction in the resistant cell line of spider monkey origin was determined to occur at a postentry stage. However, spider monkey TRIM5α expression in permissive cells failed to restrict M-PMV infection, and interference with endogenous TRIM5α in the spider monkey fibroblasts failed to relieve the block to infectivity. Our results demonstrate that TRIM5α specificity extends to betaretroviruses and suggest that New World monkeys have evolved additional mechanisms to restrict the infection of at least one primate betaretrovirus.  相似文献   

2.
Mason-Pfizer monkey virus (M-PMV) belongs to the family of betaretroviruses characterized by the assembly of immature particles within cytoplasm of infected cells in contrast to other retroviruses (e.g. HIV, RSV) that assemble their immature particles at a plasma membrane. Simultaneously with or shortly after budding a virus-encoded protease is activated and the Gag polyprotein is cleaved into three major structural proteins: matrix (MA), capsid (CA), and nucleocapsid (NC) protein. Mature retroviral CA proteins consist of two independently folded structural domains: N-terminal domain (NTD) and C-terminal dimerization domain (CTD), separated by a flexible linker. As a first step toward the solution structure elucidation, we present nearly complete backbone and side-chain 1H, 15N and 13C resonance assignment of the M-PMV NTD CA.  相似文献   

3.
CD4 T follicular helper (Tfh) cells play a unique and essential role in the generation of B cell responses in the lymph node microenvironment. Here we sought to determine if differential expression of PD-1 could be used to delineate Tfh cells in rhesus macaque lymph nodes (LN). CD3+CD4+ T cells were found to harbor a unique subset of cells that expressed the Program death-1 (PD-1) receptor at significantly high levels that were enriched in the LN compartment as compared to peripheral blood. The LN CD4+PD1hi T cells expressed a predominantly CD28+CD95+ central memory phenotype and were CCR7loICOShiBcl6hi. Additionally, CD4+PD1hi T cells preferentially expressed high levels of CXCR5 and IL-21 and significantly correlated with Bcl6+Ki-67+ IgG+ B cells. As Bcl6 is primarily expressed by proliferating B cells within active germinal centers, our results suggest that LN CD4+PD1hi T cells likely localize to active GC regions, a characteristic that is attributable to Tfh cells. Overall, our findings suggest that high levels of PD-1 expression on CD4+ T cells in LN of rhesus macaques can serve as a valuable marker to identify Tfh cells and has implications for studying the role of Tfh cells in Human immunodeficiency virus (HIV), Simian immunodeficiency virus (SIV) and other infectious diseases that use the rhesus macaque model.  相似文献   

4.
Immature capsids of the Betaretrovirus, Mason-Pfizer Monkey virus (M-PMV), are assembled in the pericentriolar region of the cell, and are then transported to the plasma membrane for budding. Although several studies, utilizing mutagenesis, biochemistry, and immunofluorescence, have defined the role of some viral and host cells factors involved in these processes, they have the disadvantage of population analysis, rather than analyzing individual capsid movement in real time. In this study, we created an M-PMV vector in which the enhanced green fluorescent protein, eGFP, was fused to the carboxyl-terminus of the M-PMV Gag polyprotein, to create a Gag-GFP fusion that could be visualized in live cells. In order to express this fusion protein in the context of an M-PMV proviral backbone, it was necessary to codon-optimize gag, optimize the Kozak sequence preceding the initiating methionine, and mutate an internal methionine codon to one for alanine (M100A) to prevent internal initiation of translation. Co-expression of this pSARM-Gag-GFP-M100A vector with a WT M-PMV provirus resulted in efficient assembly and release of capsids. Results from fixed-cell immunofluorescence and pulse-chase analyses of wild type and mutant Gag-GFP constructs demonstrated comparable intracellular localization and release of capsids to untagged counterparts. Real-time, live-cell visualization and analysis of the GFP-tagged capsids provided strong evidence for a role for microtubules in the intracellular transport of M-PMV capsids. Thus, this M-PMV Gag-GFP vector is a useful tool for identifying novel virus-cell interactions involved in intracellular M-PMV capsid transport in a dynamic, real-time system.  相似文献   

5.
For differentiation of Ilvin-Bykovsky virus (IBV) and monkey Meson-Pfeizer virus (M-PMV) the method of virus neutralization with antibodies against the envelope virus antigen was used. The viruses were cultivated in similar human embryo cells. The results of the virus neutralization were determined by presence or absence of the gs-antigen in the infected cells. The antiserum to M-PMV envelope antigens did not neutralize the IBV antigen. It has been concluded that IBV and M-PMV differ by their envelope antigens and should be regarded as different viruses.  相似文献   

6.
The gene encoding an integrase of Mason-Pfizer monkey virus (M-PMV) is located at the 3'-end of the pol open reading frame. The M-PMV integrase has not been previously isolated and characterized. We have now cloned, expressed, isolated, and characterized M-PMV integrase and compared its activities and primary structure with those of HIV-1 and other retroviral integrases. M-PMV integrase prefers untranslated 3'-region-derived long-terminal repeat sequences in both the 3'-processing and the strand transfer activity assays. While the 3'-processing reaction catalyzed by M-PMV integrase was significantly increased in the presence of Mn(2+) and Co(2+) and was readily detectable in the presence of Mg(2+) and Ni(2+) cations, the strand transfer activity was strictly dependent only on Mn(2+). M-PMV integrase displays more relaxed substrate specificity than HIV-1 integrase, catalyzing the cleavage and the strand transfer of M-PMV and HIV-1 long-terminal repeat-derived substrates with similar efficiency. The structure-based sequence alignment of M-PMV, HIV-1, SIV, and ASV integrases predicted critical amino acids and motifs of M-PMV integrase for metal binding, interaction with nucleic acids, dimerization, protein structure maintenance and function, as well as for binding of human immunodeficiency virus type 1 and Rous avian sarcoma virus integrase inhibitors 5-CI-TEP, DHPTPB and Y-3.  相似文献   

7.
The study was carried out to investigate the ability of three aphids, Myzus persicae, Aphis gossypii and Aphis spiraecola, to acquire and retain the Potato Virus Y (PVY) isolate, PVYNTN. Tobacco plants, Nicotiana tabacum var. Xanthi, were used as test plant for the virus inoculation and aphid acquisition. The serological test double-antibody sandwich enzyme-linked immunosorbent assay was applied for virus detection on the test plants and aphids. Furthermore, virus retention by aphids was also assessed using a monoclonal anti-PVYN. Although a duration of 2 min was enough for the virus acquisition, the three tested aphids showed different capacities to retain PVYNTN. The retention of PVYNTN was 3 h for M. persicae and A. spiraecola, and 2 h for A. gossypii. This study provides basic information of the virus retention by potato-colonizing aphid species, which may increase our understanding of PVY epidemiology in Tunisia.  相似文献   

8.
SYNTHETIC polycarboxylates have been reported to impart resistance to viral infection to experimental animals1–8. Injection of these polyanions induces interferon1–3,5–9, to which it therefore seemed logical to attribute the antiviral effect. The high degree and long duration of protection, however, are not in accord with the low and transitory levels of interferon induced, suggesting that mechanisms other than interferon are involved. Certain polyanions have been found directly to inactivate virus or to inhibit its adsorption to cells10in vitro. This may delay the development of viral infection in vivo. Stimulation of reticuloendothelial cell activity, as demonstrated by increased phagocytosis induced by pyran copolymer11, may deviate virus from its target cells.  相似文献   

9.
TUMOURS can be induced in hamsters by the various strains of murine sarcoma virus (MSV)1–6. Tumours differ, however, in the antigens which are expressed. Whereas the cell line HT-1, derived from early passages of a hamster tumour induced by the Moloney strain of MSV (M-MSV), contains no trace of infectious virus or virion antigen2,7, tumours induced by the Harvey (H), Kirsten (Ki) and later passages of the M-MSV-(GLV) viruses have yielded sarcoma viruses with a hamster-specific host range3–6,8 which do not share envelope4–6,9 or group specific10 antigens with murine viruses. The HT-1 cell does retain the MSV genome which can be rescued by murine leukaemia viruses2. Such rescued viruses are termed pseudo-types and contain the envelope and group-specific antigens of the rescuing virus. The virus preparation from tumours induced by M-MSV(GLV) differed from the other hamster-specific viruses in that a non-sarcomagenic C-type virus could be isolated from cultures infected beyond the cell transformation end point6. This virus was also hamster-specific in host range and antigenic properties and specifically interfered with cell transformation by the various hamster-specific virus strains9. This virus also shared an ether-stable virion-antigen with a C-type virus found in a lymphoma which occurred spontaneously in a hamster10. This shared antigen seems to be the principal structural polypeptide of hamster C-type viruses and is structurally similar but antigenically distinct from its mouse homologue (unpublished work of S. O., C. Foreman, G. K. and R. V. G.). These findings led us to propose that the hamster-specific non-sarcomagenic C-type virus was a hamster leukaemia virus (in the generic but not necessarily the pathological sense) and the virus is therefore designated HaLV9,10. The hamster-specific sarcoma viruses are considered to be pseudotypes of MSV rescued in vivo by HaLV and are abbreviated accordingly; for example, M-MSV(HaLV) represents the hamster-specific sarcoma virus rescued from M-MSV induced tumours. This is plausible because HaLV is able to rescue the MSV genome from HT-1 cells6. (This change in the nomenclature has been made in order to reflect the antigenic composition of the hamster-specific virus more accurately. In addition, to indicate the virus rescued from M-MSV(GLV)-induced hamster tumours, a terminal G is added after the parentheses. This has been done only to distinguish it from the virus obtained from M-MSV induced hamster tumours, for there is no evidence of residual activity from GLV.)  相似文献   

10.
Every year, Dengue virus (DENV) infects approximately 100 million people. There are currently several vaccines undergoing clinical studies, but most target the induction of neutralizing antibodies. Unfortunately, DENV infection can be enhanced by subneutralizing levels of antibodies that bind virions and deliver them to cells of the myeloid lineage, thereby increasing viral replication (termed antibody-dependent enhancement [ADE]). T lymphocyte-based vaccines may offer an alternative that avoids ADE. The goal of our study was to describe the cellular immune response generated after primary DENV infection in Indian rhesus macaques. We infected eight rhesus macaques with 105 plaque-forming units (PFU) of DENV serotype 2 (DENV2) New Guinea C (NGC) strain, and monitored viral load and the cellular immune response to the virus. Viral replication peaked at day 4 post-infection and was resolved by day 10. DENV-specific CD4+ and CD8+ T lymphocytes targeted nonstructural (NS) 1, NS3 and NS5 proteins after resolution of peak viremia. DENV-specific CD4+ cells expressed interferon-gamma (IFN-γ) along with tumor necrosis factor-alpha (TNF-α), interleukin-2 (IL-2), and macrophage inflammatory protein-1 beta (MIP-1β). In comparison, DENV-specific CD8+ cells expressed IFN-γ in addition to MIP-1β and TNF-α and were positive for the degranulation marker CD107a. Interestingly, a fraction of the DENV-specific CD4+ cells also stained for CD107a, suggesting that they might be cytotoxic. Our results provide a more complete understanding of the cellular immune response during DENV infection in rhesus macaques and contribute to the development of rhesus macaques as an animal model for DENV vaccine and pathogenicity studies.  相似文献   

11.
Here we show that simian immunodeficiency virus (SIV) infection of rhesus macaques results in rapid upregulation of tetherin (BST-2 or CD317) on peripheral blood lymphocytes, including the CD4+ CCR5+ T cell targets of virus infection, with a peak of induction that coincides with peak alpha interferon (IFN-α) levels in plasma, and that tetherin remains above baseline levels throughout chronic infection. These observations are consistent with a role for tetherin in innate immunity to immunodeficiency virus infection.  相似文献   

12.
Retroviral proteases are translated as a part of Gag-related polyproteins, and are released and activated during particle release. Mason-Pfizer monkey virus (M-PMV) Gag polyproteins assemble into immature capsids within the cytoplasm of the host cells; however, their processing occurs only after transport to the plasma membrane and subsequent release. Thus, the activity of M-PMV protease is expected to be highly regulated during the replication cycle. It has been proposed that reversible oxidation of protease cysteine residues might be responsible for such regulation. We show that cysteine residues in M-PMV protease can form an intramolecular S-S bridge. The disulfide bridge shifts the monomer/dimer equilibrium in favor of the dimer, and increases the proteolytic activity significantly. To investigate the role of this disulfide bridge in virus maturation and replication, we engineered an M-PMV clone in which both protease cysteine residues were replaced by alanine (M-PMV(PRC7A/C106A)). Surprisingly, the cysteine residues were dispensable for Gag polyprotein processing within the virus, indicating that even low levels of protease activity are sufficient for polyprotein processing during maturation. However, the long-term infectivity of M-PMV(PRC7A/C106A) was noticeably compromised. These results show clearly that the proposed redox mechanism does not rely solely on the formation of the stabilizing S-S bridge in the protease. Thus, in addition to the protease disulfide bridge, reversible oxidation of cysteine and/or methionine residues in other domains of the Gag polyprotein or in related cellular proteins must be involved in the regulation of maturation.  相似文献   

13.
In vivo passage of a poorly replicating, nonpathogenic simian-human immunodeficiency virus (SHIV-HXBc2) generated an efficiently replicating virus, KU-1, that caused rapid CD4+ T-lymphocyte depletion and AIDS-like illness in monkeys (S. V. Joag, Z. Li, L. Foresman, E. B. Stephens, L.-J. Zhao, I. Adany, D. M. Pinson, H. M. McClure, and O. Narayan, J. Virol. 70:3189–3197, 1996). The env gene of the KU-1 virus was used to create a molecularly cloned virus, SHIV-HXBc2P 3.2, that differed from a nonpathogenic SHIV-HXBc2 virus in only 12 envelope glycoprotein residues. SHIV-HXBc2P 3.2 replicated efficiently and caused rapid and persistent CD4+ T-lymphocyte depletion in inoculated rhesus macaques. Compared with the envelope glycoproteins of the parental SHIV-HXBc2, the SHIV-HXBc2P 3.2 envelope glycoproteins supported more efficient infection of rhesus monkey peripheral blood mononuclear cells. Both the parental SHIV-HXBc2 and the pathogenic SHIV-HXBc2P 3.2 used CXCR4 but none of the other seven transmembrane segment receptors tested as a second receptor. Compared with the parental virus, viruses with the SHIV-HXBc2P 3.2 envelope glycoproteins were more resistant to neutralization by soluble CD4 and antibodies. Thus, changes in the envelope glycoproteins account for the ability of the passaged virus to deplete CD4+ T lymphocytes rapidly and specify increased replicative capacity and resistance to neutralization.  相似文献   

14.
Mason-Pfizer monkey virus (M-PMV) is the prototype type D retrovirus which preassembles immature intracytoplasmic type A particles within the infected cell cytoplasm. Intracytoplasmic type A particles are composed of uncleaved polyprotein precursors which upon release are cleaved by the viral proteinase to their constituent mature proteins. This results in a morphological change in the virion described as maturation. We have investigated the role of the viral proteinase in virus maturation and infectivity by inhibiting the function of the enzyme through mutagenesis of the proteinase gene and by using peptide inhibitors originally designed to block human immunodeficiency virus type 1 proteinase activity. Mutation of the active-site aspartic acid, Asp-26, to asparagine abrogated the activity of the M-PMV proteinase but did not affect the assembly of noninfectious, immature virus particles. In mutant virions, the transmembrane glycoprotein (TM) of M-PMV, initially synthesized as a cell-associated gp22, is not cleaved to gp20, as is observed with wild-type virions. This demonstrates that the viral proteinase is responsible for this cleavage event. Hydroxyethylene isostere human immunodeficiency virus type 1 proteinase inhibitors were shown to block M-PMV proteinase cleavage of the TM glycoprotein and Gag-containing precursors in a dose-dependent manner. The TM cleavage event was more sensitive than cleavage of the Gag precursors to inhibition. The infectivity of treated particles was reduced significantly, but experiments showed that inhibition of precursor and TM cleavage may be at least partially reversible. These results demonstrate that the M-PMV aspartyl proteinase is activated in released virions and that the hydroxyethylene isostere proteinase inhibitors used in this study exhibit a broad spectrum of antiretroviral activity.  相似文献   

15.
In the present research, two Chinese rhesus monkeys were inoculated intravenously with 5000 TCID50 of SIVmac239. The changes in the numbers of CD4+ T lymphocyte in peripheral blood, plasma viral loads, proviral DNA and humoral antibodies against virus were periodically monitored during 121 days. At the early stage of infection, proviral DNA had been detected in PBMCs, and infectious SIVmac239 virus had been isolated from PBMCs. At the same period, the numbers of CD4+ T lymphocytes were significantly decreased, and maintained at low level during the 121-day period of infection. Plasma viral loads reached the peak at week 2 post-inoculation and kept at a steady state subsequently. Moreover, antibodies against viral proteins were detected from plasma. All the results showed that the two Chinese rhesus monkeys had been infected with SIVmac239 successfully. This animal model can be applied for further AIDS researches. These authors contributed equally to this work.  相似文献   

16.
17.
Models for bacterial and viral infections and intoxication were developed in rhesus macaques (Macaca mulatta). Manifestations of acute-phase illnesses, e.g., temperature, white blood cell (WBC) counts, blood cultures, etc., were monitored at regular intervals. Viral infection was established by inoculating subcutaneously 412 plaque-forming units of Trinidad strain, Venezuelan equine encephalomyelitis virus. A diphasic febrile response developed, with the first fever peak on days 1 to 2 and a second peak on days 3 to 5. Viremia occurred within 12 hours and persisted in some animals for as long as five days. WBC responses were typical of viral infection. Gram-positive infections were induced by intravenous (IV) inoculation of 108 Type I Diplococcus pneumoniae. Peak febrile response and bacteremia (102 to 106 pneumococci per milliliter) occurred within 48 hours. Gram-negative infections, obtained by IV inoculation with 109 Salmonella typhimurium, induced maximal febrile responses within 24 to 48 hours. Leukopenia occurred in 75% of animals; all were bacteremic. Mortality was 40% at 72 hours. Manifestations of intoxication following IV administration of purified staphylococcal enterotoxin B (10 μg per kg body weight) consisted of vomiting, diarrhea, leukopenia, and fever within one to three hours and resembled nonlethal staphylococcal food poisoning of man. These studies indicate that the rhesus macaque has reproducible and characteristic responses to a variety of microbial stimuli and therefore is eminently suitable for studying pathophysiologic, metabolic, and immunologic parameters of infectious or toxic disease processes.  相似文献   

18.
S S Rhee  H X Hui    E Hunter 《Journal of virology》1990,64(8):3844-3852
The capsids of Mason-Pfizer monkey virus (M-PMV), an immunosuppressive type D retrovirus, are preassembled in the infected cell cytoplasm and are then transported to the plasma membrane, where they are enveloped in a virus glycoprotein-containing lipid bilayer. The role of viral glycoprotein in intracellular transport of M-PMV capsids was investigated with a spontaneous mutant (5A) of M-PMV, which we show here to be defective in envelope glycoprotein biosynthesis. DNA sequence analysis of the env gene of mutant 5A reveals a single nucleotide deletion in the middle of the gene, which results in the synthesis of a truncated form of the envelope glycoprotein. Evidence is presented showing that the mutant glycoprotein is not expressed at the cell surface but is retained in the endoplasmic reticulum. Normal levels of gag-pro-pol precursor polyproteins are made and processed in mutant genome-transfected cells, and high levels of noninfectious particles lacking viral glycoprotein are released with normal kinetics into the culture medium. No intracisternal budding of capsids is observed. We conclude that viral glycoprotein is required neither for targeting preassembled capsids of M-PMV to the plasma membrane for final maturation nor for the budding process. Since the presence or absence of M-PMV glycoprotein at the site of budding does not affect the efficiency or kinetics of the targeting process, the preassembled capsid of M-PMV, in contrast to those of intracisternal type A particles, appears to have an intrinsic signal for intracellular transport to the plasma membrane.  相似文献   

19.
West Nile virus (WNV) is a mosquito-borne flavivirus that infects humans and other mammals. In some cases WNV causes severe neurological disease. During recent years, outbreaks of WNV are increasing in worldwide distribution and novel genetic variants of the virus have been detected. Although a substantial amount of data exists on WNV infections in rodent models, little is known about early events during WNV infection in primates, including humans. To gain a deeper understanding of this process, we performed experimental infections of rhesus macaques and common marmosets with a virulent European WNV strain (WNV-Ita09) and monitored virological, hematological, and biochemical parameters. WNV-Ita09 productively infected both monkey species, with higher replication and wider tissue distribution in common marmosets compared to rhesus macaques. The animals in this study however, did not develop clinical signs of WNV disease, nor showed substantial deviations in clinical laboratory parameters. In both species, the virus induced a rapid CD56dimCD16bright natural killer response, followed by IgM and IgG antibody responses. The results of this study show that healthy rhesus macaques and common marmosets are promising animal models to study WNV-Ita09 infection. Both models may be particularly of use to evaluate potential vaccine candidates or to investigate WNV pathogenesis.  相似文献   

20.
The DNA polymerase from the Mason-Pfizer monkey virus (M-PMV), an RNA tumor virus not typical type-C or type-B, has been purified a thousand-fold over the original crude viral suspension. This purified enzyme is compared to a similarly purified DNA polymerase from the primate woolly monkey virus, a type-C virus. The two enzymes have similar template specificities but differ in their requirements for optimum activity. Both DNA polymerases have a pH optimum of 7.3 in Tris buffer. M-PMV enzyme has maximum activity with 5 mM Mg(2+) and 40 mM potassium chloride, whereas the woolly monkey virus optima are 100 mM potassium chloride with 0.8 mM Mn(2+). The apparent molecular weight of the M-PMV enzyme is approximately 110,000, whereas the woolly monkey virus polymerase is approximately 70,000. The biochemical properties of these two enzymes were also compared to a similarly purified enzyme from a type-C virus from a lower mammal (Rauscher murine leukemia virus). The results show that more similarity exists between the DNA polymerases from viruses of the same type (type-C), than between the polymerases from viruses of different types but from closely related species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号