共查询到20条相似文献,搜索用时 8 毫秒
1.
Silvia Biocca Pietro Calissano Donatella Barra Paolo M. Fasella 《Analytical biochemistry》1978,87(2):334-342
A method for obtaining a tritium-labeled S-100 protein of high specific radio-activity (〉~ 10 Ci/mmol) under mild conditions is described. The method is based on the reductive methylation of lysine residues; the labeling procedurs does not appreciably alter the physical and chemical properties of 8–100 protein, as measured by studies of intrinsic fluorescence enhancement, 45Ca binding, electrophoretic mobility, titrations of sulfydryl groups, and intramolecular crosslinking of S-100 via disulfide bond formation. Alternative labeling procedures based on chemical or enzymatie iodination with 125I, invelving the use of powerful oxidizing agents, cause an irreversible exidation of the sulfydryl groups and affect the above-mentioned properties of the S-100 protein. 相似文献
2.
White adipose tissue development is regulated by many factors, including the energy content of food and the genetic background. Nevertheless, little is known about possible differential effects of high-fat palatable diets when fed for short or long-time periods. Thus, the expression of certain genes involved with lipid metabolism (peroxisome proliferator-activated receptor gamma, PPARgamma2; retinoic receptors; fatty acid binding protein, aP2 and uncoupling proteins, UCP) may be affected by those dietary manipulations (high-energy-yielding diet and time duration of feeding). High-fat feeding for 8 days decreased mRNA UCP3 levels compared to control fed animals, while feeding for 30 days increased them over controls. Similar findings occurred for PPARgamma2 and aP2. Furthermore, statistically significant associations were found among PPARgamma2, aP2 and UCP3 mRNA levels. These data suggest a physiological time-dependent response seeking to prevent excessive fat deposition when animals are fed for short-term with a high amount of dietary fat, which was followed by an adaptive period to the high-energy content of diet throughout a coregulation among certain lipid metabolism related genes: PPARgamma2, aP2, UCP3. 相似文献
3.
Yota Tatara Shinichiro Suto Yoshitaka Sasaki Masahiko Endo 《Bioscience, biotechnology, and biochemistry》2013,77(10):1615-1618
Salmon nasal cartilage was micronized in ethanol using a rotor–stator homogenizer for the high yield of proteoglycan extraction. This procedure also brought about depressing the degradation of proteoglycan and the contamination of collagens. Proteoglycan was extracted by 4 M magnesium chloride and isolated by anion-exchange chromatography. The gel filtration HPLC and the antibody reactivity showed that the core protein was intact. 相似文献
4.
Extraction of proteins from Saccharomyces cerevisiae ribosomes under nondenaturing conditions 总被引:1,自引:0,他引:1
The differential sensitivity of ribosomal proteins to removal by salts has been studied. Proteins were extracted from the large and small subunits of cytoplasmic ribosomes from Saccharomyces cerevisiae by washing the individual subunits with a series of solutions containing increasing concentrations of NH4Cl (0.74-3.56 M) for a defined time (20 min) at 0 degrees C. The molar ratio of magnesium to ammonium ions of 1:40 was maintained to protect the ribosomal subparticles from complete disassembly. Proteins extracted under each salt condition were analyzed for composition by two-dimensional polyacrylamide gel electrophoresis. The relative quantity of each protein was determined. Most proteins were not removed from the ribosomal particle completely by any one condition, but were preferentially enriched in a single fraction. Whereas most proteins could be solubilized, several proteins remained predominantly or exclusively with the final core particle. The kinetics of protein release from both subunits at a single NH4Cl concentration (0.74 M) were also studied. Release of protein was time dependent, i.e., longer extraction generally removed more of the same proteins. However, prolonged treatment (240 min) of subunits, even at the same salt concentration, resulted in removal of additional species of proteins in varying amounts. Among the ribosomal RNA species, only the 5 S RNA species was released from the ribosomal particles upon treatment. 相似文献
5.
Proteomes are dynamic, i.e., the protein components of living cells change in response to various stimuli. Protein changes can involve shifts in the abundance of protein components, in the interactions of protein components, and in the activity of protein components. Two-dimensional gel electrophoresis (2-DE) coupled with peptide mass spectrometry is useful for the analysis of relative protein abundance, but the denaturing conditions of classical 2-DE do not allow analysis of protein interactions or protein function. We have developed a nondenaturing 2-DE method that allows analysis of protein interactions and protein functions, as demonstrated in our analysis of the cytosol and crude membrane fractions of the facultative anaerobe Shewanella oneidensis MR-1. Our experiments demonstrate that enzymatic activity is retained under the sample and protein separation methods described, as shown by positive malate dehydrogenase activity results. We have also found protein interactions within both the soluble and membrane fractions. The method described will be useful for the characterization of the functional proteomes of microbial systems. 相似文献
6.
7.
Oxidizing two native methionine residues predominantly populates the denatured state of monomeric lambda repressor (MetO-lambdaLS) under nondenaturing conditions. NMR was used to characterize the secondary structure and dynamics of MetO-lambdaLS in standard phosphate buffer. 13Calpha and 1Halpha chemical shift indices reveal a region of significant helicity between residues 9 and 29. This helical content is further supported by the observation of medium-range amide NOEs. The remaining residues do not exhibit significant helicity as determined by NMR. We determined 15N relaxation parameters for 64 of 85 residues at 600 and 800 MHz. There are two distinct regions of reduced flexibility, residues 8-32 in the N-terminal third and residues 50-83 in the C-terminal third. The middle third, residues 33-50, has greater flexibility. We have analyzed the amplitude of the backbone motions in terms of the physical properties of the amino acids and conclude that conformational restriction of the backbone MetO-lambdaLS is due to nascent helix formation in the region corresponding to native helix 1. The bulkiness of amino acid residues in the C-terminal third leads to the potential for hydrophobic interactions, which is suggested by chemical exchange detected by the difference in spectral density J(0) at the two static magnetic fields. The more flexible middle region is the result of a predominance of small side chains in this region. 相似文献
8.
Extraction of proteins from the large subunit of bovine mitochondrial ribosomes under nondenaturing conditions 总被引:1,自引:0,他引:1
The 55 S mammalian mitochondrial ribosome (referred to hereafter as "mitoribosome") is protein-rich, containing nearly twice as much protein as the Escherichia coli ribosome. In order to produce soluble mitochondrial proteins and protein-deficient subribosomal particles for use in functional and structural studies, the proteins of bovine mitoribosomes were extracted by washing in a series of buffers containing increasing concentrations of LiCl as the only chaotropic agent. LiCl disruption is used in order to preserve the solubilized proteins in a substantially "native" configuration. The extraction mixtures were characterized by sucrose density gradient analysis and the compositions of the stripped protein and residual pellet fractions were determined by two-dimensional polyacrylamide gel electrophoresis. In order to analyze the behavior or individual proteins, the intensity of Coomassie blue stain for each protein was normalized against the intensity of stain for the same protein in a control sample. Buffers with 1, 2, and 4 M LiCl each extract a specific subset of mitoribosomal proteins, while another group of proteins remains in the residual pellet fraction. Although very few proteins are detected in only one condition, most proteins are specifically enriched in one fraction. This LiCl procedure, therefore, produces fractionated groups of mitoribosomal proteins which can be used directly as a source for those proteins in which they are enriched, or they can be used as a starting point in further purification procedures. In contrast to results with E. coli ribosomes, several mitoribosomal proteins remain core-associated, indicating a different structural organization in these ribosomes. 相似文献
9.
Although poorly understood, the properties of the denatured state ensemble are critical to the thermodynamics and the kinetics of protein folding. The most relevant conformations to cellular protein folding are the ones populated under physiological conditions. To avoid the problem of low expression that is seen with unstable variants, we used methionine oxidation to destabilize monomeric lambda repressor and predominantly populate the denatured state under nondenaturing buffer conditions. The denatured ensemble populated under these conditions comprises conformations that are compact. Analytical ultracentrifugation sedimentation velocity experiments indicate a small increase in Stokes radius over that of the native state. A significant degree of alpha-helical structure in these conformations is detected by far-UV circular dichroism, and some tertiary interactions are suggested by near-UV circular dichroism. The characteristics of the denatured state populated by methionine oxidation in nondenaturing buffer are very different from those found in chemical denaturant. 相似文献
10.
One-step fractionation method for isolating H1 histones from chromatin under nondenaturing conditions 总被引:3,自引:0,他引:3
By combining conventional methods of chromatin preparation with ion-exchange chromatography in CM-Sephadex C-25, we have been able to isolate and fractionate histone H1 variants from different sources. This method of fractionation is very simple and allows one to obtain, very rapidly, large amounts of these histones in a native nondenatured conformation. 相似文献
11.
Dinucleotide repeats are genetic markers that are useful for many purposes, including genetic epidemiology, population genetics,
and genetic diagnostics. The accuracy of analyses based on dinucleotide repeat polymorphisms is highly dependent on the success
achieved in minimizing genotyping errors. Genotyping errors in dinucleotide repeat typing may arise for various reasons, including
polymerase chain reaction (PCR) processing errors and the use of unsuitable electrophoretic conditions for resolving amplification
products (i.e., lack of single-base resolution and inadequate precision in allele sizing). We have recently described a nondenaturing
electrophoretic system useful for detecting PCR processing errors that lead to misidentification of heterozygotes as homozygotes
in (AC)n repeat typing. Here, we show that this system also allows resolution of (AC)n repeats in native conditions with single-base resolution and high sizing precision, on the basis of an analysis of seven
human (AC)n repeats ranging in size from 72 to 217 bp. This PAGE system is thus also useful for reducing the likelihood both of allele
misidentification due to the absence of single-base resolution and of inaccuracies in allele sizing due to anomalous electrophoretic
migrations among the alleles within an (AC)n repeat. 相似文献
12.
Structural and dynamic characterization of an unfolded state of poplar apo-plastocyanin formed under nondenaturing conditions 下载免费PDF全文
Bai Y Chung J Dyson HJ Wright PE 《Protein science : a publication of the Protein Society》2001,10(5):1056-1066
Plastocyanin is a predominantly beta-sheet protein containing a type I copper center. The conformational ensemble of a denatured state of apo-plastocyanin formed in solution under conditions of low salt and neutral pH has been investigated by multidimensional heteronuclear NMR spectroscopy. Chemical shift assignments were obtained by using three-dimensional triple-resonance NMR experiments to trace through-bond heteronuclear connectivities along the backbone and side chains. The (3)J(HN,Halpha) coupling constants, (15)N-edited proton-proton nuclear Overhauser effects (NOEs), and (15)N relaxation parameters were also measured for the purpose of structural and dynamic characterization. Most of the residues corresponding to beta-strands in the folded protein exhibit small upfield shifts of the (13)C(alpha) and (13)CO resonances relative to random coil values, suggesting a slight preference for backbone dihedral angles in the beta region of (phi,psi) space. This is further supported by the presence of strong sequential d(alphaN)(i, i + 1) NOEs throughout the sequence. The few d(NN)(i, i + 1) proton NOEs that are observed are mostly in regions that form loops in the native plastocyanin structure. No medium or long-range NOEs were observed. A short sequence, between residues 59 and 63, was found to populate a nonnative helical conformation in the unfolded state, as indicated by the shift of the (13)C(alpha), (13)CO, and (1)H(alpha) resonances relative to random coil values and by the decreased values of the (3)J(HN,Halpha) coupling constants. The (15)N relaxation parameters indicate restriction of motions on a nanosecond timescale in this region. Intriguingly, this helical conformation is present in a sequence that is close to but not in the same location as the single short helix in the native folded protein. The results are consistent with earlier NMR studies of peptide fragments of plastocyanin and confirm that the regions of the sequence that form beta-strands in the native protein spontaneously populate the beta-region of (phi,psi) space under folding conditions, even in the absence of stabilizing tertiary interactions. We conclude that the state of apo-plastocyanin present under nondenaturing conditions is a noncompact unfolded state with some evidence of nativelike and nonnative local structuring that may be initiation sites for folding of the protein. 相似文献
13.
Partial reassembly of yeast 60 S ribosomal subunits in vitro following controlled dissociation under nondenaturing conditions 总被引:2,自引:0,他引:2
Previously it has been shown that 12 of the yeast ribosomal proteins were extractable from 60 S subunits under a specific nondenaturing condition [J. C. Lee, R. Anderson, Y. C. Yeh, and P. Horowitz (1985) Arch. Biochem. Biophys. 237, 292-299]. In the present paper, we showed that these proteins could be reassembled with the corresponding protein-deficient core particles to form biologically active ribosomal subunits. Effects of time, temperature, and varying concentrations of monovalent cations, divalent cations, cores, and ribosomal proteins on reconstitution were examined. Reconstitution was determined by binding of radiolabeled proteins to the nonradiolabeled cores as well as activity for polypeptide synthesis in a cell-free protein-synthesizing system. The optimal conditions for reconstitution were established. Whereas the core particles were about 10-20% as active as native 60 S subunits in an in vitro yeast cell-free protein-synthesizing system, the reconstituted particles were 80% as active. The activity of the reconstituted particles was proportional to the amount of extracted proteins added to the reconstitution mixture. About 55 +/- 7% of the core particles recombined with the extracted proteins to form reconstituted particles. These reconstituted particles cosedimented with native 60 S subunits in glycerol gradients and contained all of the 12 extractable proteins. 相似文献
14.
Transferrin-binding protein B of Neisseria meningitidis: sequence-based identification of the transferrin-Binding site confirmed by site-directed mutagenesis 下载免费PDF全文
Renauld-Mongénie G Lins L Krell T Laffly L Mignon M Dupuy M Delrue RM Guinet-Morlot F Brasseur R Lissolo L 《Journal of bacteriology》2004,186(3):850-857
A sequence-based prediction method was employed to identify three ligand-binding domains in transferrin-binding protein B (TbpB) of Neisseria meningitidis strain B16B6. Site-directed mutagenesis of residues located in these domains has led to the identification of two domains, amino acids 53 to 57 and 240 to 245, which are involved in binding to human transferrin (htf). These two domains are conserved in an alignment of different TbpB sequences from N. meningitidis and Neisseria gonorrhoeae, indicating a general functional role of the domains. Western blot analysis and BIAcore and isothermal titration calorimetry experiments demonstrated that site-directed mutations in both binding domains led to a decrease or abolition of htf binding. Analysis of mutated proteins by circular dichroism did not provide any evidence for structural alterations due to the amino acid replacements. The TbpB mutant R243N was devoid of any htf-binding activity, and antibodies elicited by the mutant showed strong bactericidal activity against the homologous strain, as well as against several heterologous tbpB isotype I strains. 相似文献
15.
The adenovirus E1A 243R protein immortalizes primary cells in culture and induces part of the phenotypes required for transformation. It has also been shown to interact with a number of cellular polypeptides, including the product of the retinoblastoma gene. To understand more fully the molecular activities of the E1A 243R protein in association with these proteins as well as its role in the processes of cellular growth, we have developed a method for rapidly purifying this protein from genetically engineered Escherichia coli under nondenaturing conditions. The plasmid-encoded E1A protein, when expressed in a protease-deficient mutant, is found to have the same length and amino acid sequence as that which is produced in a mammalian cell. The procedure for purifying the E1A 243R protein from bacteria relies primarily upon immunoaffinity chromatography and the use of a peptide comprising the epitope recognized by an E1A-specific antibody. Elution of the E1A protein under this condition allows for gentle isolation and a purity that ranges from 90 to 96%. However, without the addition of micromolar amounts of ATP prior to its elution from the antibody column, the E1A protein is found in association with an E. coli protein of 70 kDa. Immunoblot analysis with a specific antibody showed that this bacterial protein was the heat shock protein dnaK, which is known to have extensive homology with the hsp-hsc70 family of proteins in mammalian cells. Recognition of E1A by the dnaK protein may very well reflect a situation that also occurs between the mammalian heat shock proteins and the E1A 243R protein after adenovirus infection. 相似文献
16.
Transferrin-binding protein complex is the receptor for transferrin uptake in Trypanosoma brucei 总被引:3,自引:0,他引:3 下载免费PDF全文
《The Journal of cell biology》1995,131(5):1173-1182
In Trypanosoma brucei, the products of two genes, ESAG 6 and ESAG 7, located upstream of the variant surface glycoprotein gene in a polycistronic expression site form a glycosylphosphatidylinositol- anchored transferrin-binding protein (TFBP) complex. It is shown by gel filtration and membrane-binding experiments that the TFBP complex is heterodimeric and binds one molecule of transferrin with high affinity (2,300 binding sites per cell; KD = 2.1 nM for the dominant expression site from T. brucei strain 427 and KD = 131 nM for ES1.3A of the EATRO 1125 stock). The ternary transferrin-TFBP complexes with iron-loaded or iron-free ligand are stable between pH 5 and 8. Cellular transferrin uptake can be inhibited by 90% with Fab fragments from anti-TFBP antibodies. After uptake, the TFBP complex and its ligand are routed to lysosomes where transferrin is proteolytically degraded. While the degradation products are released from the cells, iron remains cell associated and the TFBP complex is probably recycled to the membrane of the flagellar pocket, the only site for exo- and endocytosis in this organism. It is concluded that the TFBP complex serves as the receptor for the uptake of transferrin in T. brucei by a mechanism distinct from that in mammalian cells. 相似文献
17.
Pashley CL Morgan GJ Kalverda AP Thompson GS Kleanthous C Radford SE 《Journal of molecular biology》2012,416(2):300-318
The unfolded ensemble in aqueous solution represents the starting point of protein folding. Characterisation of this species is often difficult since the native state is usually predominantly populated at equilibrium. Previous work has shown that the four-helix protein, Im7 (immunity protein 7), folds via an on-pathway intermediate. While the transition states and folding intermediate have been characterised in atomistic detail, knowledge of the unfolded ensemble under the same ambient conditions remained sparse. Here, we introduce destabilising amino acid substitutions into the sequence of Im7, such that the unfolded state becomes predominantly populated at equilibrium in the absence of denaturant. Using far- and near-UV CD, fluorescence, urea titration and heteronuclear NMR experiments, we show that three amino acid substitutions (L18A–L19A–L37A) are sufficient to prevent Im7 folding, such that the unfolded state is predominantly populated at equilibrium. Using measurement of chemical shifts, 15N transverse relaxation rates and sedimentation coefficients, we show that the unfolded species of L18A–L19A–L37A deviates significantly from random-coil behaviour. Specifically, we demonstrate that this unfolded species is compact (Rh = 25 Å) relative to the urea-denatured state (Rh ≥ 30 Å) and contains local clusters of hydrophobic residues in regions that correspond to the four helices in the native state. Despite these interactions, there is no evidence for long-range stabilising tertiary interactions or persistent helical structure. The results reveal an unfolded ensemble that is conformationally restricted in regions of the polypeptide chain that ultimately form helices I, II and IV in the native state. 相似文献
18.
Iimura S Umezaki T Takeuchi M Mizuguchi M Yagi H Ogasahara K Akutsu H Noda Y Segawa S Yutani K 《Biochemistry》2007,46(12):3664-3672
The cysteine-free pyrrolidone carboxyl peptidase (PCP-0SH) from a hyperthermophile, Pyrococcus furiosus, can be trapped in the denatured state under nondenaturing conditions, corresponding to the denatured structure that exists in equilibrium with the native state under physiological conditions. The denatured state is the initial state (D1 state) in the refolding process but differs from the completely denatured state (D2 state) in the concentrated denaturant. Also, it has been found that the D1 state corresponds to the heat-denatured state. To elucidate the structural basis of the D1 state, H/D exchange experiments with PCP-0SH were performed at pD 3.4 and 4 degrees C. The results indicated that amide protons in the C-terminal alpha6-helix region hardly exchanged in the D1 state with deuterium even after 7 days, suggesting that the alpha6-helix (from Ser188 to Glu205) of PCP-0SH was stably formed in the D1 state. In order to examine the role of the alpha6-helix in folding and stability, H/D exchange experiments with a mutant, A199P, at position 199 in the alpha6-helix region were performed. The alpha6-helix region of A199P in the D1 state was partially unprotected, while some hydrophobic residues were protected against the H/D exchange, although these hydrophobic residues were unprotected in the wild-type protein. These results suggest that the structure of A199P in the D1 state formed a temporary stable denatured structure with a non-native hydrophobic cluster and the unstructured alpha6-helix. Both the stability and the refolding rate decreased by the substitution of Pro for Ala199. We can conclude that the native-like helix (alpha6-helix) of PCP-0SH is already constructed in the D1 state and is necessary for efficient refolding into the native structure and stabilization of PCP-0SH. 相似文献
19.
The effect of polypeptide denaturation of Bacillus thuringiensis Cry1A toxins or purified Manduca sexta 120-kDa aminopeptidase N on the specificities of their interactions was investigated. Ligand and dot blotting experiments were conducted with (125)I-labeled Cry1Ac, Cry1Ac mutant (509)QNR-AAA(511) (QNR-AAA), or 120-kDa aminopeptidase N as the probe. Mutant QNR-AAA does not bind the N-acetylgalactosamine moiety on the 120-kDa aminopeptidase. Both (125)I-Cry1Ac and (125)I-QNR-AAA bound to 210- and 120-kDa proteins from M. sexta brush border membrane vesicles and purified 120-kDa aminopeptidase N on ligand blots. However, on dot blots (125)I-QNR-AAA bound brush border vesicles but did not bind purified aminopeptidase except when aminopeptidase was denatured. In the reciprocal experiment, (125)I-aminopeptidase bound Cry1Ac but did not bind QNR-AAA. (125)I-aminopeptidase bound Cry1Ab to a limited extent but not the Cry1Ab domain I mutant Y153D or Cry1Ca. However, denatured (125)I-aminopeptidase detected each Cry1A toxin and mutant but not Cry1Ca on dot blots. The same pattern of recognition occurred with native (nondenatured) (125)I-aminopeptidase probe and denatured toxins as the targets. The broader pattern of toxin-binding protein interaction is probably due to peptide sequences being exposed upon denaturation. Putative Cry toxin-binding proteins identified by the ligand blot technique need to be investigated under native conditions early in the process of identifying binding proteins that may serve as functional toxin receptors. 相似文献
20.