首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using gene targeting by homologous recombination in Ceratodon purpureus, we were able to knock out four phytochrome photoreceptor genes independently and to analyze their function with respect to red light dependent phototropism, polarotropism, and chlorophyll content. The strongest phenotype was found in knock-out lines of a newly described phytochrome gene termed CpPHY4 lacking photo- and polarotropic responses at moderate fluence rates. Eliminating the atypical phytochrome gene CpPHY1, which is the only known phytochrome-like gene containing a putative C-terminal tyrosine kinase-like domain, affects red light-induced chlorophyll accumulation. This result was surprising, since no light dependent function was ever allocated to this unusual gene. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Accession number for CpPHY4: EU122393.  相似文献   

2.
3.
Antlers of deer display the fastest and most robust bone development in the animal kingdom. Deposition of the minerals in the cartilage preceding ossification is a specific feature of the developing antler. We have cloned 28 genes which are upregulated in the cartilaginous section (called mineralized cartilage) of the developing (“velvet”) antler of red deer stags, compared to their levels in the fetal cartilage. Fifteen of these genes were further characterized by their expression pattern along the tissue zones (i.e., antler mesenchyme, precartilage, cartilage, bone), and by in situ hybridization of the gene activities at the cellular level. Expression dynamics of genes col1A1, col1A2, col3A1, ibsp, mgp, sparc, runx2, and osteocalcin were monitored and compared in the ossified part of the velvet antler and in the skeleton (in ribs and vertebrae). Expression levels of these genes in the ossified part of the velvet antler exceeded the skeletal levels 10–30-fold or more. Gene expression and comparative sequence analyses of cDNAs and the cognate 5′ cis-regulatory regions in deer, cattle, and human suggested that the genes runx2 and osx have a master regulatory role. GC–MS metabolite analyses of glucose, phosphate, ethanolamine-phosphate, and hydroxyproline utilizations confirmed the high activity of mineralization genes in governing the flow of the minerals from the skeleton to the antler bone. Gene expression patterns and quantitative metabolite data for the robust bone development in the antler are discussed in an integrated manner. We also discuss the potential implication of our findings on the deer genes in human osteoporosis research.  相似文献   

4.
Osteoporosis is characterized by low bone mineral density and structural deterioration of bone tissue, leading to an increased risk of fractures. It is the most common metabolic bone disorder worldwide, affecting one in three women and one in eight men over the age of 50. In the past 15 years, a large number of genes have been reported as being associated with osteoporosis. However, only in the past 4 years we have witnessed an accelerated pace in identifying and validating osteoporosis susceptibility loci. This increase in pace is mostly due to large-scale association studies, meta-analyses, and genome-wide association studies of both single nucleotide polymorphisms and copy number variations. A comprehensive review of these developments revealed that, to date, at least 15 genes (VDR, ESR1, ESR2, LRP5, LRP4, SOST, GRP177, OPG, RANK, RANKL, COLIA1, SPP1, ITGA1, SP7, and SOX6) can be reasonably assigned as confirmed osteoporosis susceptibility genes, whereas, another >30 genes are promising candidate genes. Notably, confirmed and promising genes are clustered in three biological pathways, the estrogen endocrine pathway, the Wnt/β-catenin signaling pathway, and the RANKL/RANK/OPG pathway. New biological pathways will certainly emerge when more osteoporosis genes are identified and validated. These genetic findings may provide new routes toward improved therapeutic and preventive interventions of this complex disease.  相似文献   

5.
6.
Control of livestock diseases can become complicated when wild animals are involved. The Eurasian badger (Meles meles) is considered the principle wildlife host of Mycobacterium bovis (which causes bovine tuberculosis, bTB) in Great Britain and Ireland, but wild deer have also been implicated. Whether wild deer are likely to perpetuate bTB in cattle depends on the exposure risks they pose, the mode of pathogen transmission, the distances over which the disease can be transported and whether they can maintain infection within their own populations independently of other sources. We evaluated the likely host status of each of four species of wild British deer (red, roe, fallow and Reeves' muntjac) and the badger across a range of densities typically observed in Britain by manipulating the reproductive number equation proposed by Anderson and May (1991). We estimate that roe deer almost certainly act as spillover hosts at densities lower than 30 km−2, red deer below 16 km−2, muntjac below 6 km−2, fallow below 4 km−2 and the badger below 2 km−2. We also estimate that muntjac will almost certainly act as maintenance hosts at densities above 56 km−2, fallow above 47 km−2 and badgers above 24 km−2. For densities between these values, we cannot be certain of the host status of these species, and for red and roe deer we cannot be certain of host status under most natural conditions typically experienced in parts of Britain experiencing high incidence of bTB in cattle. However, enhanced transmission rates resulting from artificially high densities such as might be experienced at supplementary feeding sites may be sufficient to promote independent maintenance of infection. We were not able to confidently assign host status to any species over a wide range of densities, but conclude that this is likely to reflect reality, where host status may be affected as much by, for example, demographic fluctuations as it is by population density. Our results imply densities below which populations of wild deer inhabiting cattle bTB hotspots ought to be maintained in order to control the possibility of them perpetuating the cycle of intra- and interspecific M. bovis transmission.  相似文献   

7.
8.

Background

Osteoporosis is a disease of the bone system that causes a decrease in skeletal density and degrades skeletal tissue. Decreased bone quality, so that bones are easily broken, damaged and fractured, is an important public health problem. Previous studies have shown that the maintenance of adult bone mass is not only due to changes in bone marrow and bone cells. By regulating apoptosis, they change the lifespan of each individual. This study influences understanding of the function of apoptosis in the pathogenesis of osteoporosis and the importance of controlling the mechanisms of osteoporosis.

Methods

On the National Institute of Biotechnology Information website, Gene Expression Omnibus (GEO) microarray data and GSE551495 GEO profiles were collected. The gene set enrichment analysis tool was used to confirm the enrichment of genetic sets in relation to the gene set. The collection of C2 gene sets is compiled from the KEGG ( https://www.gsea-msigdb.org/gsea/msigdb/human/search.jsp and https://www.kegg.jp/kegg/ ) online database and REACTOME ( https://www.gsea-msigdb.org/gsea/msigdb/human/search.jsp and https://reactome.org/ ) pathway analysis. The Search Tool for the Retrieval of Interaction Genes (STRING) website was used to construct and select proteins and genes. The comparative toxicological genomic database (CTD) tools can be used to predict the relationship between apoptosis, osteoporosis-related genes and interactions between central genes and osteoporosis.

Results

These results generally expand our understanding of the path of apoptosis in osteoporosis. We have discovered genes CASP9, CASP8, CASP3, BAX and TP53 associated with osteoporosis. In activation of KEGG apoptosis and REACTOME, caspase activation through the extrinsic apoptotic signaling pathway is characterized by the identification of a subcollection of C2. Other STRINGs show the formation of protein networks and central gene selection, and CTD can accurately predict the relationship between these apoptosis pathways and central genes.

Conclusions

Our research has highlighted the importance of the osteoporosis pathway associated with osteoporosis apoptosis with several analytical approaches. These results have broadened our understanding of the pathways of osteoporosis apoptosis. It is particularly possible to predict the sensitivity and vulnerability to osteoporosis.  相似文献   

9.
Annual re-growth of deer antler represents a unique example of complete organ regeneration. Because antler mesenchymal cells retain their embryonic capacity to develop into cartilage or bone, studying antler development provides a natural system to follow gene expression changes during mesenchymal differentiation toward chondrogenic/osteogenic lineage. To identify novel genes involved either in early events of mesenchymal cell specialization or in robust bone development, we have introduced a 3 K heterologous microarray set-up (deer cDNA versus mouse template). Fifteen genes were differentially expressed; genes for housekeeping, regulatory functions (components of different signaling pathways, including FGF, TGFβ, Wnt), and genes encoding members of the Polycomb group were represented. Expression dynamics for genes are visualized by an expression logo. The expression profile of the gene C21orf70 of unknown function is described along with the effects when over-expressed; furthermore the nuclear localization of the cognate protein is shown. In this report, we demonstrate the particular advantage of the velvet antler model in bone research for: (1) identification of mesenchymal and precartilaginous genes and (2) targeting genes upregulated in robust cartilage development. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

10.
ABSTRACT Supplementary feeding is a widespread game management practice in several red deer (Cervus elaphus) populations, with important potential consequences on the biology of this species. In Mediterranean ecosystems food supplementation occurs in the rutting period, when it may change mating system characteristics. We studied the role of food supplementation relative to natural resources in the spatial distribution, aggregation, and mean harem size of females in Iberian red deer (Cervus elaphus hispanicus) during the rut. We studied 30 red deer populations of southwestern Spain, 63% of which experienced supplementary feeding. Using multivariate spatial analyses we found that food supplementation affected distribution of females in 95% of the populations in which it occurred. Green meadows present during the mating season acted as an important natural resource influencing female distribution. Additionally, the level of female aggregation and mean harem size were significantly higher in those populations in which food supplementation determined female distribution than in populations in which female distribution did not depend on supplementary feeding. Because female aggregation and mean harem size are key elements in sexual selection, supplementary feeding may constitute an important anthropogenic element with potential evolutionary implications for populations of Iberian red deer.  相似文献   

11.
Liu RZ  Li X  Godbout R 《Genomics》2008,92(6):436-445
We have identified a new member of the FABP gene family, designated FABP12. FABP12 has the same structure as other FABP genes and resides in a cluster with FABP4/5/8/9 within 300,000 bp chromosomal region. FABP12 orthologs are found in mammals, but not in the zebrafish or chicken genomes. We demonstrate that FABP12 is expressed in rodent retina and testis, as well as in human retinoblastoma cell lines. In situ hybridization of adult rat retinal tissue indicates that FABP12 mRNA is expressed in ganglion and inner nuclear layer cells. Analysis of adult rat testis reveals a pattern of expression that is different from that of the known testis FABP (FABP9) in the testicular germ cells, suggesting distinct roles for these two genes during mammalian spermatogenesis. We propose that FABP12 arose as the result of tandem gene duplication, a mechanism that may have been instrumental to the expansion of the FABP family.  相似文献   

12.
Using degenerate primers, we were able to identify seven Hox genes for the myzostomid Myzostoma cirriferum. The recovered fragments belong to anterior class (Mci_lab, Mci_pb), central class (Mci_Dfd, Mci_Lox5, Mci_Antp, Mci_Lox4), and posterior class (Mci_Post2) paralog groups. Orthology assignment was verified by phylogenetic analyses and presence of diagnostic regions in the homeodomain as well as flanking regions. The presence of Lox5, Lox4, and Post2 supports the inclusion of Myzostomida within Lophotrochozoa. We found signature residues within flanking regions of Lox5, which are also found in annelids, but not in Platyhelminthes. As such the available Hox genes data of myzostomids support an annelid relationship. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Life in zoological gardens provides a number of benefits to captive animals, resulting in an artificial reduction of the “struggle for life” compared to their free-ranging counterparts. These advantages should result in a higher chance of surviving from 1 year to the next, and thus in longer average life expectancies for captive animals, given that the biological requirements of the species are adequately met. Here, we compare the life expectancy of captive and free-ranging populations of three deer species (reindeer Rangifer tarandus, red deer Cervus elaphus, and roe deer Capreolus capreolus). Whereas captive reindeer and red deer had life expectancies equal to or longer than free-ranging individuals, the life expectancy of captive roe deer was shorter than that of free-ranging animals. These results support the impression that roe deer are difficult to keep in zoos, whereas reindeer and red deer perform well under human care. We suggest that the mean life expectancy of captive populations relative to that of corresponding free-ranging populations is a reliable indicator to evaluate the husbandry success of a species in captivity.  相似文献   

14.
Four members of the twist gene family (twist1a, 1b, 2, and 3) are found in the zebrafish, and they are thought to have arisen through three rounds of gene duplication, two of which occurred prior to the tetrapod-fish split. Phylogenetic analysis groups most of the vertebrate Twist1 peptides into clade I, except for the Twist1b proteins of the acanthopterygian fish (medaka, pufferfish, stickleback), which clustered within clade III. Paralogies and orthologies among the zebrafish, medaka, and human twist genes were determined using comparative synteny analysis of the chromosomal regions flanking these genes. Comparative nucleotide substitution analyses also revealed a faster rate of nucleotide mutation/substitution in the acanthopterygian twist1b compared to the zebrafish twist1b, thus accounting for their anomalous phylogenetic clustering. We also observed minimal expression overlap among the four twist genes, suggesting that despite their significant peptide similarity, their regulatory controls have diverged considerably, with minimal functional redundancy between them. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Summary Wolf-ungulate interactions were studied in the pristine deciduous and mixed forests of the Bialowiea National Park in 1985–1989. The study period included two severe and two mild winters. The community of ungulates inhabiting Bialowiea National Park consisted of red deer Cervus elaphus, 55% of all ungulates; wild boar Sus scrofa, 42%; and roe deer Capreolus capreolus, moose Alces alces, and European bison Bison bonasus, about 1% each. The average size of red deer groups increased from 2.7 (SD 2.35) in spring and summer to 6.9 (SD 6.84) in autumn and winter. In winter the group size of red deer was positively correlated with the depth of snow cover and negatively correlated with the mean daily temperature. Average group size of wild boar did not change significantly between seasons; it was 6.8 (SD 5.16) in spring and summer and 5.7 (SD 4.67) in autumn and winter. Analysis of 144 wolf scats showed that wolves preyed selectively on red deer. In October–April, Cervidae (mostly red deer) constituted 91% of biomass consumed by wolves, while wild boar made up only 8%. In May–September deer formed 77% of prey biomass, and the share of wild boar increased to 22%. In all seasons of the year wolves selected juveniles from deer and boar populations: 61% of red deer and 94% of wild boar of determined age recovered from wolves' scats were young <1 year old. Analysis of 117 carcasses of ungulates found in Bialowiea National Park showed that predation was the predominant mortality factor for red deer (40 killed, 10 dead from causes other than predation) and roe deer (4 killed, none dead). Wild boar suffered most from severe winter conditions (8 killed, 56 dead). The percentage of ungulates that had died from undernutrition and starvation in the total mortality was proportional to the severity of winter.  相似文献   

16.
A microarray carrying 5,648 probes of Medicago truncatula root-expressed genes was screened in order to identify those that are specifically regulated by the arbuscular mycorrhizal (AM) fungus Gigaspora rosea, by Pi fertilisation or by the phytohormones abscisic acid and jasmonic acid. Amongst the identified genes, 21% showed a common induction and 31% a common repression between roots fertilised with Pi or inoculated with the AM fungus G. rosea, while there was no obvious overlap in the expression patterns between mycorrhizal and phytohormone-treated roots. Expression patterns were further studied by comparing the results with published data obtained from roots colonised by the AM fungi Glomus mosseae and Glomus intraradices, but only very few genes were identified as being commonly regulated by all three AM fungi. Analysis of Pi concentrations in plants colonised by either of the three AM fungi revealed that this could be due to the higher Pi levels in plants inoculated by G. rosea compared with the other two fungi, explaining that numerous genes are commonly regulated by the interaction with G. rosea and by phosphate. Differential gene expression in roots inoculated with the three AM fungi was further studied by expression analyses of six genes from the phosphate transporter gene family in M. truncatula. While MtPT4 was induced by all three fungi, the other five genes showed different degrees of repression mirroring the functional differences in phosphate nutrition by G. rosea, G. mosseae and G. intraradices. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
18.
  • 1 Throughout Europe, the range of many deer species is expanding. We provide current distribution maps for red deer Cervus elaphus, sika Cervus nippon, fallow deer Dama dama and muntjac deer Muntiacus sp. in Ireland, and estimates of range expansion rates for red deer, sika and fallow deer.
  • 2 There was a considerable expansion in the ranges of red deer, sika and fallow deer between 1978 and 2008. The compound annual rate of expansion was 7% for red deer, 5% for sika and 3% for fallow deer. The total range increase was 565% for red deer, 353% for sika and 174% for fallow deer. The potential implications of these expansions are discussed.
  • 3 There are unknown numbers of red‐sika hybrid deer in some parts of Ireland. Range expansion is likely to lead to further hybridizations with implications for the genetic integrity of deer stocks.
  • 4 Sightings of free‐roaming muntjac deer were first recorded in 2007. The distribution of confirmed sightings of single and multiple animals in the eastern region of Ireland suggests multiple releases.
  • 5 Deer are already impacting on both the economic and biodiversity values of habitats in Ireland, where, at present, no sustainable deer management policy exists.
  相似文献   

19.
Osteoarthritis (OA) is characterized by alterations to subchondral bone as well as articular cartilage. Changes to bone in OA have also been identified at sites distal to the affected joint, which include increased bone volume fraction and reduced bone mineralization. Altered bone remodelling has been proposed to underlie these bone changes in OA. To investigate the molecular basis for these changes, we performed microarray gene expression profiling of bone obtained at autopsy from individuals with no evidence of joint disease (control) and from individuals undergoing joint replacement surgery for either degenerative hip OA, or fractured neck of femur (osteoporosis [OP]). The OP sample set was included because an inverse association, with respect to bone density, has been observed between OA and the low bone density disease OP. Compugen human 19K-oligo microarray slides were used to compare the gene expression profiles of OA, control and OP bone samples. Four sets of samples were analyzed, comprising 10 OA-control female, 10 OA-control male, 10 OA-OP female and 9 OP-control female sample pairs. Print tip Lowess normalization and Bayesian statistical analyses were carried out using linear models for microarray analysis, which identified 150 differentially expressed genes in OA bone with t scores above 4. Twenty-five of these genes were then confirmed to be differentially expressed (P < 0.01) by real-time PCR analysis. A substantial number of the top-ranking differentially expressed genes identified in OA bone are known to play roles in osteoblasts, osteocytes and osteoclasts. Many of these genes are targets of either the WNT (wingless MMTV integration) signalling pathway (TWIST1, IBSP, S100A4, MMP25, RUNX2 and CD14) or the transforming growth factor (TGF)-β/bone morphogenic protein (BMP) signalling pathway (ADAMTS4, ADM, MEPE, GADD45B, COL4A1 and FST). Other differentially expressed genes included WNT (WNT5B, NHERF1, CTNNB1 and PTEN) and TGF-β/BMP (TGFB1, SMAD3, BMP5 and INHBA) signalling pathway component or modulating genes. In addition a subset of genes involved in osteoclast function (GSN, PTK9, VCAM1, ITGB2, ANXA2, GRN, PDE4A and FOXP1) was identified as being differentially expressed in OA bone between females and males. Altered expression of these sets of genes suggests altered bone remodelling and may in part explain the sex disparity observed in OA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号