首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane phospholipid was found to be hydrolyzed presumably by an intracellular phospholipase C, and diglyceride-rich membrane vesicles were released from the cells during protoplast formation in Bacillus cereus Bacillus subtilis, Micrococcus lysodeikticus, and Staphylococcus aureus. The released membranes consisted mainly of small vesicles of 50 to 100 nm in diameter. They have a lower density than that of protoplast membranes in all the bacteria tested in the present study.  相似文献   

2.
In cap cells of intact plant roots exposed to 1mM uranyl for 30 min or less, uranyl crystals were found only in cell walls and in secretory products which had been extruded from the protoplast. In roots exposed for 10–20 hr to 0.1mm uranyl, packets of uranyl crystals bound to secretory products were found within the protoplasts of those exterior cells which contained accumulations of secretory products between the cell wall and protoplast. Although the evidence indicated that these packets of crystals entered the protoplast pinocytotically, results with these specialized exterior cells did not apply to the vast majority of root cap cells in which, after prolonged exposure to 0.1mm uranyl, crystals were concentrated in vacuoles. In roots exposed to 1 or 5mm uranyl for 1 hr, the plasmalemma of interior cap cells was much thicker (13.1 nm) than normal (8.2 nm), and many invaginations and vesicular structures were found near the protoplast surface. Crystals were confined to cell walls except for a few found in vesicles with thickened membranes. Serial sections indicated that most vesicular structures with thickened membranes were in contact with the cell wall, but a few, including some which contained uranyl crystals, were within the protoplast. These results provide evidence of pinocytotic activity in intact plant cells exposed to a toxic heavy metal.  相似文献   

3.
Isolated membranes of the cell wall-less stable protoplast L-form of Proteus mirabilis were characterized by density gradient centrifugation and by assay for their major chemical constituents, proteins, phospholipids and lipopolysaccharide, and for some specific marker enzymes of the cytoplasmic membrane. In most of the analyzed properties the L-form protoplast membrane resembled the bacterial cytoplasmic membrane, with some notable modifications. considerable amounts of lipopolysaccharide, normally an exclusive constituent of the outer membrane, were found. Furthermore, the L-form membranes contained the functions of the reduced nicotinamide adenine dinucleotide oxidase system, of d-lactate dehydrogenase (EC 1.1.1.28) and of succinate dehydrogenase (EC 1.3.99.1) at specific activities comparable to, or in some cases considerably higher than, those present in cytoplasmic membranes of the bacterial form. Of two peptidoglycan DD-carboxypetidase/transpeptidases (EC 3.4.17.8 and EC 2.3.2.10), which are normally present in the cytoplasmic membrane of the bacterial form of P. mirabilis, the membrane of the protoplast L-form contained only one. Electron microscopy of thin sectioned L-form protoplasts showed extensive heterogeneity of membraneous structures. In addition to the single membraneous integument, internal membrane-bounded vesicles and multiple stacks of membranes were present, as the result of unbalanced growth and membrane synthesis in the L-form state.  相似文献   

4.
The protoplast of maturing axial tracheids in the secondary xylem of shortleaf pine (Pinus echinata Mill.) was studied by transmission and scanning electron microscopy. The mature protoplast is differentiated into two interconnected components: (1) the commonly observed peripheral layer lining the secondary cell wall, and (2) an elaborate reticulum of cytoplasmic filaments and placoids within the central vacuole. The reticulum provides an extensive surface area of vacuolar membranes for rapid exchange of nutrients and metabolites with the vacuolar sap, which is envisaged to function as a vital medium during the period of secondary cell wall synthesis. The breakdown of the protoplast which terminates tracheid maturation is associated with poorly defined alterations of the vacuolar membranes. This is indicated by increased formation of cytoplasmic spherules and membraneous vesicles which may be portions of separated vacuolar membrane during early stages of degradation. Autolysis is supposed to occur when the cytoplasm is exposed to the vacuolar sap after rupture and separation of the vacuolar membranes. The Gomori acid phosphatase technique as combined with electron microscopy produced no evidence of autolysosomal segresomes in strands of intravacuolar reticulum of the cytoplasm.  相似文献   

5.
Latent ATPase, located on the inner surface of protoplast ghosts of Mycobacterium phlei, was unmasked either by trypsin or an impermeable form of trypsin, ethylene maleic anhydride-trypsin. Density gradient experiments showed that the ghost preparations remained intact following trypsin treatment. Evidence was obtained that 125I-trypsin failed to penetrate the ghost membranes. Thus, attempts were made to determine whether the ATPase molecule in the ghost membranes is accessible from the outer surface. Treatment of protoplast ghosts and trypsin-treated ghosts with 125I by the lactoperoxidase method resulted in the labeling of ATPase only in the trypsin-treated ghost preparations. The antibody to latent ATPase inhibited ATPase activity in trypsin-treated ghosts. The changes in the fluorescence polarization of diphenyl hexatriene indicated that trypsin treatment of the ghost membranes resulted in an increase in membrane fluidity. These studies suggest that the latent ATPase moiety has undergone translocation to the outer surface or it became accessible to trypsin digestion from the outer surface of the membranes as a result of removal of some proteins covering ATPase molecule in the membranes.  相似文献   

6.
Most of the X-prolyl dipeptidyl aminopeptidase activity of Saccharomyces cerevisiae was found to be associated with purified vacuolar membranes (specific activity approx. 75-times higher than in the protoplast lysate). The tonoplast-bound enzyme is thermosensitive. Another heat-resistant enzyme was found in the protoplast lysate. The tonoplast-bound thermosensitive enzyme shows an apparent Km of 0.06 mM against L-alanyl-L-prolyl-p-nitroanilide while the heat-resistant enzyme shows an apparent Km of 0.4 mM against the same substrate.  相似文献   

7.
The application of a protamine-ferritin conjugate for labelling of isolated protoplast membranes of Bacillus subtilis S 13/1 is described. Contrary to Mycoplasma membranes which could only be labelled on the outer side of the membrane, ferritin was deposited on both membrane sides as a single layer without cluster formation.  相似文献   

8.
Summary Protoplasts isolated from celery cell suspension cultures, were mixed with fungal protoplasts, from either the saprophytic speciesAspergillus nidulans or the pathogenic speciesFusarium oxysporum. The incubation of protoplast mixtures with PEG caused close adhesion between plant and fungal protoplasts. Subsequent dilution of PEG resulted in the uptake of protoplasts from either fungal species into the plant protoplast cytoplasm. A range of PEG concentrations, incubation times and dilution rates were tested to maximise adhesion and uptake frequencies. Identification of uptake was achieved either by fluorescent staining of nuclei or by electron-microscopy. A maximum of 10% celery protoplasts had taken upA. nidulans protoplasts after PEG treatment. Fungal protoplasts were taken up into celery protoplast cytoplasm by endocytosis, and were maintained within vesicles; two bounding membranes were observed by electron microscopy. Plant protoplast viability was determined during prolonged incubation following fungal protoplast uptake. The presence ofA. nidulans protoplasts tended to maintain celery protoplast viability and although some morphological disintegration occurred intact celery protoplasts remained for at least 92 h after uptake. The uptake ofF. oxysporum protoplasts markedly depressed celery protoplast viability after 24 h incubation and greater celery protoplast disintegration occurred.Abbreviations PEG Polyethylene glycol - DAPI 4,6-diaminido-2-phenylindole - 2,4-D 2,4-dichlorophenoxyacetic acid  相似文献   

9.
This study reconstructs early stages of Rozella allomycis endoparasitic infection of its host, Allomyces macrogynus. Young thalli of A. macrogynus were inoculated with suspensions of R. allomycis zoospores and allowed to develop for 120 h. Infected thalli at intervals were fixed for electron microscopy and observed. Zoospores were attracted to host thalli, encysted on their surfaces, and penetrated their walls with an infection tube. The parasite cyst discharged its protoplast through an infection tube, which invaginated the host plasma membrane. The host plasma membrane then surrounded the parasite protoplast and formed a compartment confining it inside host cytoplasm. The earliest host-parasite interface within host cytoplasm consisted of two membranes, the outer layer the host plasma membrane and the inner layer the parasite plasma membrane. At first a wide space separated the two membranes and no material was observed within this space. Later, as the endoparasite thallus expanded within the compartment, the two membranes became closely appressed. As the endoparasite thallus continued to enlarge, the interface developed into three membrane layers. Thus, host plasma membrane surrounded the parasite protoplast initially without the parasite having to pierce the host plasma membrane for entry. Significantly, host-derived membrane was at the interface throughout development.  相似文献   

10.
When protoplasts from Bacillus subtilis are incubated with sonicated liposomes made from egg-yolk phosphatidylcholine, this phospholipid is incorporated into the protoplast membranes. Biochemical, fluorescence and ultrastructural data suggest that incorporation occurs through membrane fusion.  相似文献   

11.
During hyperosmotic shock, the protoplast and stretched-out peptidoglycan layer first shrink together until the turgor pressure in the cell is relieved. Being non-compressible, the outer and inner membranes must fold their superfluous surfaces. While the protoplast contracts further, the inner membrane rearranges into plasmolysis spaces visible by phase contrast microscopy. Two opposing theories predict a similar positioning of spaces in dividing cells and filaments: the ‘periseptal annulus model, based on adhesion zones, involved in the predetermination of the division site; and a ‘restricted, random model’, based on physical properties of the protoplast. Strong osmotic shock causes retraction of the inner membrane over almost the entire surface forming the so-called ‘Bayer bridges’. These tubular adhesion sites are preserved by chemical fixation, and can be destroyed by cryofixation and freeze-substitution of unfixed ceils. Both the regular positioning of the plasmolysis spaces and the occurrence of tubular adhesion sites can be explained on the basis of physical properties of the membrane which necessitate rearrangements by membrane flow during shrinkage of the protoplast.  相似文献   

12.
Shedding of hyaluronate synthase from streptococci.   总被引:3,自引:0,他引:3       下载免费PDF全文
Hyaluronate synthase was shed into the culture medium from growing streptococci (group C) together with nascent hyaluronate. The mechanism of solubilization was analysed using isolated protoplast membranes. Solubilization increased when membranes were suspended in larger volumes, but it was temperature-independent and was not inhibited by protease inhibitors. Increased hyaluronate chain length enhanced solubilization. The soluble synthase could re-integrate into Streptococcal membranes in a saturable manner. The soluble synthase behaved like an integral membrane protein, although it was not integrated into phospholipid vesicles. In sucrose velocity centrifugation the synthase had a higher sedimentation rate in detergent-free solution, indicating that it existed in an aggregated state.  相似文献   

13.
Summary Water uptake ofArabidopsis thaliana protoplasts was measured after transfer into hypo-osmotic conditions. The time-dependent swelling of protoplast populations was monitored by a Coulter counter device. In order to ascertain the contribution of the plasma membrane intrinsic protein 1b (PIP1b) to the membrane's water permeability, protoplasts of five different plant lines that were transformed with a PIP1b antisense construct were compared to controls. The size distribution of 5 independent protoplast preparations provided similar results for control and antisense lines under iso-osmolar conditions. After transfer into hypo-osmotic conditions, a time difference for the swelling of protoplasts from the different sources was observed. The sizes of control protoplasts changed in less than 20 s, which indicates high water influx rates. In contrast, the protoplast populations obtained from 5 different antisense plants took about 75 s to reach a steady-state cell size distribution. The difference in time by a factor of about 3 confirms the significance of the aquaporin PIP1b for the water permeability of plant plasma membranes and the cellular water transport.  相似文献   

14.
Callus cells of rice (Oryza sativa L.) that were actively dividing in suspension culture had lost the ability to divide during the isolation process of protoplasts. Factors influencing the protoplast viability were examined using highly purified preparations of cellulase C1, xylanase, and pectin lyase, which were essential enzymes for the isolation of protoplasts from the rice cells. The treatment of the cells with xylanase and pectin lyase, both of which are macerating enzymes, caused cellular damage. Xylanase treatment was more detrimental to the cells. Osmotic stress, cell wall fragments solubilized by xylanase, and disassembly of cortical microtubules were not the primary factors which damaged the rice cells and protoplasts. The addition of AgNO3, an inhibitor of ethylene action, to the protoplast isolation medium increased the number of colonies formed from the cultured protoplasts, although the yield of protoplasts was reduced by the addition. Superoxide radical (O2-) was generated from the cells treated with xylanase or pectin lyase. The addition of superoxide dismutase and catalase to the protoplast isolation medium resulted in a marked improvement in protoplast viability especially when the non-additive control protoplasts formed colonies with a low frequency. The addition of glutathione peroxidase and phospholipase A2, which have been known to reduce and detoxify lipid hydroperoxides in membranes, to the protoplast culture medium significantly increased the frequency of colony formation. These results suggested that some of the damage to rice protoplasts may be caused by oxygen toxicity.  相似文献   

15.
Cell membranes of the yeast Candida utilis isolated by lysis of protoplasts have been shown to be lipoprotein in nature. Electron microscopy shows that Mg++ is responsible for maintaining the integrity of the membrane. A close serological relationship was found between membranes and cell walls isolated from the yeast. This relationship was exhibited not only by membranes obtained by strepzyme treatment but also by those obtained from the action of helicase enzyme. No such relationship existed between membranes and whole cells. Related data have been obtained by treatment of yeasts with different digestive enzymes. All of the results suggest that the protoplast membrane possesses traces of structural cell wall material. This material is detectable by serological tests, but not by electron microscopy.  相似文献   

16.
Neotelomycin induced lysis of the protoplasts of Bac. megaterium and inhibited their succinate dehydrogenase activity. Direct correlation between the lytic activity of the antibiotic and its effect on succinate dehydrogenase was found. Neotelomycin had no effect on the dehydrogenase activity of the protoplast lysates. Possibly, suppression of the protoplast succinate dehydrogenase of Bac. megaterium under the effect of neotelomycin was due to significant structural changes caused by the antibiotic in the protoplast membranes and leading to their lysis and not to the direct effect on the enzyme. Neotelomycin had practically no effect on the spheroplast dehydrogenase activity of E. coli resistant to the antibiotic and did not induce their lysis. Resistance of E. coli to neotelomycin must be associated not with the presence of the antibiotic non-permeable cell wall but the peculiar properties of the membrane cytoplasm.  相似文献   

17.
The submicroscopic structure of growing and regeneratingSchizosaccharomyces pombe protoplasts cultivated in solid and liquid medium was studied by means of ultrathin sectioning. The protoplasts regenerate within 24 hours. Shortly before growth commences, rudiments of the new cell wall can be identified on the protoplast surface. Simultaneously, a large number of dictyosomes appears in the cytoplasm and decreases as synthesis of the new wall progresses. An increase occurs in the number of endoplasmic reticulum membranes some of which are arranged parallel with the cytoplasm membrane of the protoplast. Throughout the whole time of regeneration the protoplasts contain only one nucleus. The nucleo-cytoplasm ratio of growing and regenerating protoplasts is lower than in intact cells. The number of mitochondria falls at the outset of regeneration and does not rise again until towards the end.  相似文献   

18.
Deoxycholate disruption of Micrococcus lysodeikticus protoplast membranes resulted in solubilization of both l-malate and reduced nicotinamide adenine dinucleotide (NADH) dehydrogenase enzymes (substrate: 2,6-dichlorophenolindophenol oxidoreductases). Insoluble residues contained cytochromes of the b, c, and a type. Solubilized dehydrogenases were reconstituted with insoluble residues by treatment of disrupted membranes with magnesium ions. Most of the solubilized l-malate and NADH dehydrogenase activities were precipitated by magnesium ions independent of enzyme reconstitution with insoluble residues. Reconstituted dehydrogenases explained the mechanism for restoration of disrupted l-malate and NADH oxidase activities (4). Black light irradiation inhibited oxidase activities of both native and reconstituted membranes. These irradiated membrane oxidases were partially restored by exogenous napthoquinones [K(2(20)) and K(2(50))] but not by CoQ((6)). Reconstitution experiments showed that native membrane napthoquinone was retained in the insoluble residues of deoxycholate-disrupted membranes.  相似文献   

19.
Six compounds of the group of quaternary ammonium salts have been tested for their biological activity using yeasts as a biological system. They have an inhibitory effect on respiration, cell growth and amino acid transport. A destroying action on protoplast regeneration and respiration has been also observed. The studied chemicals appear to have very pleiotropic action, focused on a damage of mitochondrial and cell plasma membranes.  相似文献   

20.
《Plant science》1986,46(1):63-68
Protoplasts were isolated from successive sections along the mung bean hypocotyl. High yields were obtained with mature tissues. The fatty acid composition of the protoplasts was similar to that found in the original cells which indicates that no major structural alteration of membranes occurs during protoplast isolation. In contrast, all the cells regenerated from the protoplasts exhibited a modified lipid composition and isoperoxidase profiles when compared to hypocotyl cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号