首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Phospholipase Cdelta4 (PLC delta4) gene has been cloned from the cDNA library of regenerating rat liver. Using PLC delta4 gene-disrupted mice (PLC delta4(-/-)), we studied a role of PLC delta4 during liver regeneration after partial hepatectomy (PH). In PLC delta4(-/-), liver regeneration occurred in an apparently normal way. However, BrdU-indices indicated that PLC delta4 gene disruption delayed the onset of DNA synthesis by 2 h. Noticeably, the BrdU-indices in PLC delta4(+/+) remained rather constant throughout S phase, 25-35%, whereas in PLC delta4(-/-), it fluctuated drastically from 25% at 34 h to 65% at late S, 42 h after PH. This fact showed that PLC delta4 gene disruption caused a higher synchronization of cell proliferation. The mRNA for PLC delta4 in PLC delta4(+/+) appeared at late G1, and the expression continued throughout S phase. PLC activity increased transiently in chromatin at the late G1 and S phases in only PLC delta4(+/+), but not in PLC delta4(-/-). The specific increases in PLC activity well correlated with the transient increases of protein kinase C (PKC) alpha in chromatin of PLC delta4(+/+). PKC epsilon also increased transiently in chromatin from PLC delta4(+/+) at late S. It is concluded that PLC delta4 regulates the liver regeneration in cooperation with nuclear PKC alpha and epsilon.  相似文献   

2.
C D Lu  J J Byrnes 《Biochemistry》1992,31(49):12403-12409
Proliferating cell nuclear antigen (PCNA) and PCNA-dependent DNA polymerase delta were partially purified and characterized from rabbit bone marrow. Rabbit DNA polymerase delta sediments at 8.2 S upon glycerol density gradient centrifugation. Similar to calf thymus PCNA-dependent DNA polymerase delta, a 125-123-kDa doublet and 48-kDa polypeptides correlate with DNA polymerase activity. Western blotting of rabbit DNA polymerase delta with polyclonal antibody to calf thymus PCNA-dependent DNA polymerase delta gives the same results as calf thymus delta; the 125-123-kDa doublet is recognized. PCNA-dependent DNA polymerase delta is resistant to inhibition by dideoxynucleotides and is relatively insensitive to inhibition by N2-[p-(n-butyl)phenyl]dGTP. A 3'-->5' exonuclease copurifies with the DNA polymerase. The processivity of DNA polymerase delta alone is very low but greatly increases with the addition of PCNA from rabbit bone marrow or calf thymus. Comparative studies of the original DNA polymerase delta from rabbit bone marrow demonstrate a lack of recognition by antibodies to calf thymus delta and a high degree of processivity in the absence of PCNA. Additionally, the originally described DNA polymerase delta is a single polypeptide of 122 kDa. These features would recategorize the original delta to the epsilon category by recently proposed convention. PCNA-dependent DNA polymerase delta is a relatively minor component of rabbit bone marrow compared to DNA polymerase alpha and PCNA-independent DNA polymerase delta (epsilon), the relative proportions being alpha, 60%; delta, 7%; and epsilon, 30%.  相似文献   

3.
ADP-ribosylation of nuclear proteins, catalysed by the enzyme poly(ADP-ribose) polymerase, is involved in the regulation of different cellular processes of DNA metabolism. To further clarify the role of the enzyme during proliferating activity of mammalian cells, we have studied the control of gene expression in regenerating rat liver. The changes in activity and mRNA levels were analysed during the early and late phases of the compensatory model. When enzyme activity was measured in isolated liver nuclei obtained at different times after hepatectomy, two different phases were observed: an early wave occurring before the onset of DNA synthesis, and a second one, starting several hours after the onset of DNA synthesis and returning to control values at later times. The evaluation of the enzymatic level in nuclear extracts and by activity gel analysis showed a more gradual increase starting 1 day after hepatectomy, in concomitance with the peak of DNA synthesis. By using a specific murine cDNA probe, a significant enhancement of mRNA levels for poly(ADP-ribose) polymerase was observed during liver regeneration, slightly preceding the onset of DNA synthesis. The results obtained show that changes in poly(ADP-ribose) polymerase activity, during liver regeneration, are associated both to early events preceding the increase in DNA synthesis and to later phases of the cell proliferation process.  相似文献   

4.
The biological importance of histone H1 was investigated in relation to the cell cycle using liver regeneration in rat. Histone H1 was extracted from the regenerating rat liver at various intervals after partial hepatectomy and the number of phosphate residues was measured. The inhibitory effect of the extracted histone H1 on DNA primase was assayed. The activities of DNA polymerase-alpha, DNA primase and DNA synthesis were also determined in the regenerating rat liver. It was found that: 1) phosphate residue in histone H1 from normal rat liver was between 2-3 mol/mol of histone H1. 2) The number of phosphate residues did not change for the first 16h after partial hepatectomy. 3) A dramatic sudden increase of phosphate residues was detected at 18h after partial hepatectomy. 4) The high levels of phosphate residues remained constant thereafter up to 50h. 5) DNA primase activity was less inhibited by highly phosphorylated than by slightly phosphorylated histone H1. It seems probable that phosphorylation of histone H1 is needed for the releasing of DNA primase activity from its inhibited state, which would start DNA synthesis together with DNA polymerase-alpha.  相似文献   

5.
DNA polymerase epsilon is a mammalian polymerase that has a tightly associated 3'----5' exonuclease activity. Because of this readily detectable exonuclease activity, the enzyme has been regarded as a form of DNA polymerase delta, an enzyme which, together with DNA polymerase alpha, is in all probability required for the replication of chromosomal DNA. Recently, it was discovered that DNA polymerase epsilon is both catalytically and structurally distinct from DNA polymerase delta. The most striking difference between the two DNA polymerases is that processive DNA synthesis by DNA polymerase delta is dependent on proliferating cell nuclear antigen (PCNA), a replication factor, while DNA polymerase epsilon is inherently processive. DNA polymerase epsilon is required at least for the repair synthesis of UV-damaged DNA. DNA polymerases are highly conserved in eukaryotic cells. Mammalian DNA polymerases alpha, delta and epsilon are counterparts of yeast DNA polymerases I, III and II, respectively. Like DNA polymerases I and III, DNA polymerase II is also essential for the viability of cells, which suggests that DNA polymerase II (and epsilon) may play a role in DNA replication.  相似文献   

6.
Replication factors A and C (RF-A and RF-C) and the proliferating cell nuclear antigen (PCNA) differentially augment the activities of DNA polymerases alpha and delta. The mechanism of stimulation by these replication factors was investigated using a limiting concentration of primed, single-stranded template DNA. RF-A stimulated polymerase alpha activity in a concentration-dependent manner, but also suppressed nonspecific initiation of DNA synthesis by both polymerases alpha and delta. The primer recognition complex, RF-C.PCNA.ATP, stimulated pol delta activity in cooperation with RF-A, but also functioned to prevent abnormal initiation of DNA synthesis by polymerase alpha. Reconstitution of DNA replication with purified factors and a plasmid containing the SV40 origin sequences directly demonstrated DNA polymerase alpha dependent synthesis of lagging strands and DNA polymerase delta/PCNA/RF-C dependent synthesis of leading strands. RF-A and the primer recognition complex both affected the relative levels of leading and lagging strands. These results, in addition to results in an accompanying paper (Tsurimoto, T., and Stillman, B. (1991) J. Biol. Chem. 266, 1950-1960), suggest that an exchange of DNA polymerase complexes occurs during initiation of bidirectional DNA replication at the SV40 origin.  相似文献   

7.
Agents discriminating between DNA polymerase alpha and DNA polymerases of class delta (polymerase delta or epsilon) were used to characterize steps in the synthesis of the lagging DNA strand of simian virus 40 during DNA replication in isolated nuclei. The synthesis of lagging-strand intermediates below 40 nucleotides, termed DNA primers (T. Nethanel, S. Reisfeld, G. Dinter-Gottlieb, and G. Kaufmann, J. Virol. 62:2867-2873, 1988), was selectively inhibited by butylphenyl dGTP or by neutralizing DNA polymerase alpha monoclonal antibodies. The synthesis of longer lagging chains of up to 250 nucleotides (Okazaki pieces) was affected to a lesser extent, possibly indirectly, by these agents. Aphidicolin, which inhibits both alpha- and delta-class enzymes, elicited the opposite pattern: DNA primers accumulated in its presence and were not converted into Okazaki pieces. These and previous data suggest that DNA polymerase alpha primase synthesizes DNA primers, whereas another DNA polymerase, presumably DNA polymerase delta or epsilon, mediates the conversion of DNA primers into Okazaki pieces.  相似文献   

8.
The budding yeast Saccharomyces cerevisiae is proving to be an useful and accurate model for eukaryotic DNA replication. It contains both DNA polymerase alpha (I) and delta (III). Recently, proliferating cell nuclear antigen (PCNA), which in mammalian cells is an auxiliary subunit of DNA polymerase delta and is essential for in vitro leading strand SV40 DNA replication, was purified from yeast. We have now cloned the gene for yeast PCNA (POL30). The gene codes for an essential protein of 29 kDa, which shows 35% homology with human PCNA. Cell cycle expression studies, using synchronized cells, show that expression of both the PCNA (POL30) and the DNA polymerase delta (POL3, or CDC2) genes of yeast are regulated in an identical fashion to that of the DNA polymerase alpha (POL1) gene. Thus, steady state mRNA levels increase 10-100-fold in late G1 phase, peak in early S-phase, and decrease to low levels in late S-phase. In addition, in meiosis mRNA levels increase prior to initiation of premeiotic DNA synthesis.  相似文献   

9.
Norepinephrine (NE), acting through the alpha 1-adrenergic receptor, modules the response of rat hepatocytes in primary culture to transforming growth factor type beta 1 (TGF beta) by increasing the amount of TGF beta required for a given degree of inhibition of epidermal growth factor (EGF)-induced DNA synthesis (Houck et al., J. Cell. Physiol. 135:551-555, 1988). This effect was also found in hepatocytes isolated from regenerating livers but was greatly magnified in cells isolated between 12 and 18 hr after two-thirds partial hepatectomy (PHX). During this period of enhanced sensitivity, NE was equally potent in terms of dose but more efficacious in the regenerating hepatocytes. As it did in control hepatocytes (Cruise et al., Science 227:749-751, 1985), the alpha 1-adrenergic receptor mediated the activity of NE in regenerating hepatocytes. Vasopressin (VP) and angiotensin-II (AG) also antagonized the effect of TGF beta and showed increased activity in regenerating hepatocytes but at only 50% or less of the maximal effect reached by NE. Regenerating hepatocytes isolated 24-72 hr after PHX exhibited decreased sensitivity to inhibition by TGF beta, with a nadir in 48-hr-regenerating cells. These findings suggest that NE may be involved in triggering the early phase of DNA synthesis during liver regeneration, with the subsequent acquisition of innate resistance to TGF beta responsible for continued proliferation at a time when TGF beta mRNA is known to be increasing in the liver (Braun et al., Proc. Natl. Acad. Sci. USA 85:1539-1543, 1988). EGF induced increased DNA and protein synthesis in cultures of control hepatocytes; TGF beta inhibited the EGF-induced DNA synthesis but had no effect on protein synthesis. This may be relevant to the latter stages of liver regeneration, when high levels of TGF beta mRNA are detected in liver and cellular hypertrophy predominates over hyperplasia.  相似文献   

10.
11.
Withdrawal of interleukin-7 from cultured murine preB lymphocytes induces cell differentiation including V(D)J immunoglobulin gene rearrangements and cell cycle arrest. Advanced steps of the V(D)J recombination reaction involve processing of coding ends by several largely unidentified DNA metabolic enzymes. We have analyzed expression and activity of DNA polymerases alpha, beta, delta and epsilon, proliferating cell nuclear antigen (PCNA), topoisomerases I and II, terminal deoxynucleotidyl transferase (TdT) and DNA ligases I, III and IV upon induction of preB cell differentiation. Despite the immediate arrest of cell proliferation, DNA polymerase delta protein levels remained unchanged for approximately 2 days and its activity was up-regulated several-fold, while PCNA was continuously present. Activity of DNA polymerases alpha,beta and epsilon decreased. Expression and activity of DNA ligase I were drastically reduced, while those of DNA ligases III and IV remained virtually constant. No changes in DNA topoisomerases I or II expression and activity occurred and TdT expression was moderately increased early after induction. Our results render DNA polymerase delta a likely candidate acting in DNA synthesis related to V(D)J recombination in lymphocytes.  相似文献   

12.
DNA polymerases catalyze the synthesis of DNA using a continuous uninterrupted template strand. However, it has been shown that a 3'-->5' exonuclease-deficient form of the Klenow fragment of Escherichia coli DNA polymerase I as well as DNA polymerase of Thermus aquaticus can synthesize DNA across two unlinked DNA templates. In this study, we used an oligonucleotide-based assay to show that discontinuous DNA synthesis was present in HeLa cell extracts. DNA synthesis inhibitor studies as well as fractionation of the extracts revealed that most of the discontinuous DNA synthesis was attributable to DNA polymerase alpha. Additionally, discontinuous DNA synthesis could be eliminated by incubation with an antibody that specifically neutralized DNA polymerase alpha activity. To test the relative efficiency of each nuclear DNA polymerase for discontinuous synthesis, equal amounts (as measured by DNA polymerase activity) of DNA polymerases alpha, beta, delta (+/- PCNA) and straightepsilon (+/- PCNA) were used in the discontinuous DNA synthesis assay. DNA polymerase alpha showed the most discontinuous DNA synthesis activity, although small but detectable levels were seen for DNA polymerases delta (+PCNA) and straightepsilon (- PCNA). Klenow fragment and DNA polymerase beta showed no discontinuous DNA synthesis, although at much higher amounts of each enzyme, discontinuous synthesis was seen for both. Discontinuous DNA synthesis by DNA polymerase alpha was seen with substrates containing 3 and 4 bp single-strand stretches of complementarity; however, little synthesis was seen with blunt substrates or with 1 bp stretches. The products formed from these experiments are structurally similar to that seen in vivo for non-homologous end joining in eukaryotic cells. These data suggest that DNA polymerase alpha may be able to rejoin double-strand breaks in vivo during replication.  相似文献   

13.
Using a titration procedure, we measured the proportion of alpha-fetoprotein (AFP) and albumin mRNA in normal, regenerating, and preneoplastic rat livers. AFP mRNA constitutes approximately 0.006% of the polysomal polyadenylated RNA of normal livers and this proportion increases only slightly before the onset of DNA synthesis in liver regeneration induced by partial hepatectomy or CCl4 injury. In either model of liver regeneration, the proportion of AFP mRNA in polysomal RNA is highest approximately 24 h after the peak of DNA synthesis. The increase in the proportion of AFP mRNA in polysomal RNA is relatively small during liver regeneration (2-4-fold) but is larger (30-50-fold) in preneoplastic livers of rats fed a choline-deficient diet containing 0.1% ethionine. In contrast to those changes in AFP mRNA, albumin mRNA levels remain unchanged during liver regeneration and double in preneoplastic livers. Our results indicate that the concept of "retrodifferentiation" as it applies to liver regeneration and certain types of hepatic neoplasia needs reevaluation.  相似文献   

14.
The expression of the adherens junction proteins vinculin, alpha-actinin, and talin was compared in serum-stimulated 3T3 cells and in regenerating rat liver following partial hepatectomy. The levels of vinculin RNA and protein synthesis were rapidly and transiently elevated in growth-activated fibroblasts (peaking at 2-3 h) and in regenerating liver (at 4-8 h), preceding the replicative stage. alpha-Actinin expression was also induced, but more slowly (peaking at 6-8 h in 3T3 cells and at 28 h in regenerating liver), and remained elevated when DNA synthesis was proceeding in both systems. The expression of talin RNA was only slightly elevated in 3T3 cells following serum stimulation, and it remained largely unchanged in regenerating liver. The levels of RNA coding for fibronectin and for the beta 1-integrin subunit were transiently and extensively induced during liver regeneration (fibronectin with a peak at 8 h and beta 1-integrin at 12 h). The uvomorulin RNA level, and the expression of the liver-specific genes albumin and transthyretin, decreased in regenerating liver. The results suggest a physiologically significant regulation in the expression of structural components which link the extracellular matrix to the microfilament system in growth-activated fibroblasts and in regenerating liver.  相似文献   

15.
Liver regeneration is regulated by several factors, including growth factors, cytokines, and post-translational modifications of several proteins. It is suggested that transglutaminase 2 (TG2) and ornithine decarboxylase (ODC) are involved in liver regeneration. To investigate the role of TG2 and ODC activities in regenerating liver, we used retinoic acid (RA), an inducer of TG2 and a suppressor of ODC. Regenerating rat liver was prepared by 70% partial hepatectomy (PH). Rats were sacrificed at 1, 2, 3, 4, and 6 days after surgery. RA was intraperitoneally injected immediately after PH. TG2 and ODC activities and products (epsilon-(gamma-glutamyl) lysine isopeptide (Gln-Lys) and polyamines, respectively) were examined at the indicated times. In RA-treated rat, DNA synthesis and ODC activity declined and the peak shifted to 2 days after PH, whereas TG2 activity increased at 1 day after PH. At that time, protein-polyamine, especially the protein-spermidine (SPD) bond, transiently decreased, whereas the formation of the Gln-Lys bond increased after PH. These results suggested that in regenerating liver, enhanced the formation of Gln-Lys bonds catalyzed by TG2 led to reduced DNA synthesis, whereas when ODC produced newly synthesized SPD, the inhibition of Gln-Lys bond production by the preferential formation of protein-SPD bonds led to an increase in DNA synthesis.  相似文献   

16.
17.
目的:探讨使用酌分泌酶抑制剂Fli-06 特异性阻断Notch 信号通路后,大鼠肝部分切除术后肝再生的情况并初步阐明 Notch-Hif-1-alpha信号通路调控肝再生的可能机制。方法:取SD 大鼠分为对照(生理盐水注射组,n=24)和抑制剂组(酌分泌酶抑制剂 注射组,n=24)。给予药物处理后,两组分别施行大鼠肝部分切除术,术后0 d,1 d,3 d,5 d,每个时间点分别留取对照组(n=6)及抑 制剂组(n=6)再生的肝组织,并检测相应肝重体重比,免疫组化法检测再生肝PCNA(增殖细胞核抗原,Proliferation Cell Nuclear Antigen)表达,RT-PCR 检测再生肝组织中的Notch1、Hes1、VEGF mRNA的变化,Western-Blot 法检测NICD(Notch 胞内段,Notch Intracellular Domain)、Hif-1-alpha(低氧诱导因子-1-alpha,Hypoxia Inducible Factor-1琢)蛋白在肝再生过程的变化情况。结果:1、肝部分切除 术后3 d和5 d,抑制剂组肝重体重比明显低于对照组差异有统计学意义(P<0.05);2、免疫组织化学染色结果提示:抑制剂组再生 肝PCNA阳性细胞率在术后1 d,3 d,5 d 均明显低于对照组(P<0.05);3、Western blot 结果表明:NICD 和Hif-1-alpha蛋白水平明显低 于对照组(P<0.05);同时RT-PCR 结果提示:抑制剂组Hes1 的mRNA表达量术后1 d,3 d明显低于对照组,差异具有统计学意义 (P<0.05)。同时,抑制剂组VEGF mRNA 水平在术后3 d,5 d明显低于对照组,差异具有统计学意义(P<0.05)。结论:在大鼠肝部分 切除术后肝再生过程中,使用酌分泌酶抑制剂Fli-06 抑制Notch 信号通路后,大鼠的肝再生能力明显降低,Notch-Hif-1alpha信号通 路可能参与调控了大鼠肝部分切除术后肝再生过程。  相似文献   

18.
As a step toward the molecular elucidation of the putative replicational apparatus associated with the nuclear matrix, we have investigated the possible matrix association of several replicational related enzymes. In addition to the previously identified DNA polymerase alpha, DNA primase, 3'-5' exonuclease, RNase H, and DNA methylase were all recovered at significant levels (20-30% of total nuclear activity) in nuclear matrix isolated from regenerating rat liver during maximal in vivo replication (22 h post-hepatectomy). In contrast, DNA ligase was not detected on the nuclear matrix even though significant activity was present in isolated nuclei. Examination of the replicative dependency of these enzyme activities following partial hepatectomy revealed pre-replicative elevations which were distinct for each matrix-bound enzyme. A second late-replicative peak in DNA methylase is consistent with a role of this matrix-bound enzyme in the maintenance of the inheritable methylation pattern. Mild sonication resulted in a significant release of all of these activities except RNase H. A major portion of the matrix-solubilized DNA polymerase alpha, DNA primase, 3'-5' exonuclease, and DNA methylase activities cosedimented on sucrose gradients between approximately 8-12 S. Our results are consistent with the organization of at least a portion of these replicative enzymes into nuclear matrix-bound replicational complexes. We also propose a novel pre-replicative assembly model of the matrix-bound replicational apparatus in which DNA primase plays an initial and critical role.  相似文献   

19.
20.
A cell-surface modulator of DNA synthesis by cultured rat hepatocytes was studied in relation to the liver regeneration process. When rat hepatocytes isolated 24 h after partial hepatectomy were cultured, the first burst of DNA synthesis peaked at 5-8 h and declined until 24 h, followed by the second burst. Rat liver plasma membranes added 2 h after plating inhibited only the second burst, while in the case of the normal hepatocytes where the DNA synthesis began to increase after 5 h, this inhibition was observed at 16 h but not at 8 h. The inhibition did not differ when the membranes obtained from regenerating livers 12 h after partial hepatectomy were used. Epidermal growth factor binding to the cultured hepatocytes was not hindered by the membranes. These results suggest that the modulator inhibits hepatocyte proliferation at the early G1-phase of the cell cycle and that its action might be controlled by other factors in the process of liver regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号