首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We report a new subfamily of alpha satellite DNA (pTRA-2) which is found on all the human acrocentric chromosomes. The alphoid nature of the cloned DNA was established by partial sequencing. Southern analysis of restriction enzyme-digested DNA fragments from mouse/human hybrid cells containing only human chromosome 21 showed that the predominant higher-order repeating unit for pTRA-2 is a 3.9 kb structure. Analysis of a "consensus" in situ hybridisation profile derived from 13 normal individuals revealed the localisation of 73% of all centromeric autoradiographic grains over the five acrocentric chromosomes, with the following distribution: 20.4%, 21.5%, 17.1%, 7.3% and 6.5% on chromosomes 13, 14, 21, 15 and 22 respectively. An average of 1.4% of grains was found on the centromere of each of the remaining 19 nonacrocentric chromosomes. These results indicate the presence of a common subfamily of alpha satellite DNA on the five acrocentric chromosomes and suggest an evolutionary process consistent with recombination exchange of sequences between the nonhomologues. The results further suggests that such exchanges are more selective for chromosomes 13, 14 and 21 than for chromosomes 15 and 22. The possible role of centromeric alpha satellite DNA in the aetiology of 13q14q and 14q21q Robertsonian translocations involving the common and nonrandom association of chromosomes 13 and 14, and 14 and 21 is discussed.  相似文献   

3.
Summary The extent of RHG-band variation of short arms of human acrocentric chromosomes was investigated in a group of 100 subjects by visually comparing the variants with the size of reference bands 7p22, 21q22 and 11q13. Marked differences were found among the chromosomes in the distribution of variants; the largest mean size of RHG-band was associated with chromosome 21, whereas the variants of chromosome 22 had the smallest band size. The study further showed that the involvement of acrocentric chromosomes in satellite association did not depend upon the size of RHG-band variants.  相似文献   

4.
A very large (giant) satellite was observed on one of the D-group chromosomes of a malformed and mentally retarded infant and her father. Detailed cytogenetic studies revealed that the giant satellite represented, in fact, a der(15) chromosome of translocation t(6;15)(p21;p12 or 13). The proposita was trisomic for a part of 6p(6pter leads to 6p21). The father was a balanced carrier, however, the deletion of the short arm of a No. 6 was hard to detect in routine karyotype analysis.  相似文献   

5.
Chromosomal heteromorphisms are described as interindividual variation of chromosomes without phenotypic consequence. Chromosomal polymorphisms detected include most regions of heterochromatin of chromosomes 1, 9, 16 and Y and the short arms of all acrocentric chromosomes. Here, we report a girl with Down-syndrome such as facies and tremendously enlarged short arm of a chromosome 22. Fluorescence in situ hybridization (FISH) with a probe specific for all acrocentric short arms revealed that the enlargement p arms of the chromosome 22 in question contained exclusively heterochromatic material derived from an acrocentric short arm. Parental studies identified a maternal origin of this heteromorphism. Cryptic trisomy 21 of the Down-syndrome critical region was excluded by a corresponding FISH-probe. Here, we report, to the best of our knowledge, largest ever seen chromosome 22 short arm, being ~×1.5 larger than the normal long arm.  相似文献   

6.
Chromosomal distribution of cloned human alpha-satellite DNA alpha R1-6 has been studied by in situ hybridization technique. The sequence under study has been shown to be predominantly located in the centromeric regions of chromosomes 13 and 21. Intercellular variability of labelling patterns in every person under analysis being insignificant, there exists strong individual variability of interchromosomal distribution of the satellite. This variability leads to the differences of the chromosome labelling density (i.e. the number of satellite DNA copies) both between and within chromosome pairs. The difference in the copy number between two homologues chromosomes, 13 and 21 reaches up to 5 times. No correlation between nondisjunction and the number of copies of alpha-satellite DNA was found. Analysis of individual distribution of satellite between homologues of chromosome 21 provides new possibilities for determination of the origin of extra chromosome in the patients with trisomy 21.  相似文献   

7.
Ekes C  Csonka E  Hadlaczky G  Cserpán I 《Gene》2004,343(2):271-279
We report here the isolation, cloning and characterization of two abundant centromeric satellite sequences (Rsat I and Rsat II) what are not related to each other, and that of a divergent subfamily (Rsat IIE) of rabbit (Oryctolagus cuniculus). The Rsat I monomers had a 375 base pair (bp) average length, while repeat units Rsat II and Rsat IIE were approximately 585 bp long. Variable amounts of Rsat I were detected by FISH at the centromeric region of 11 chromosome pairs of the complement. Rsat II hybridized to the centromere of 12 different chromosomes, and two of these were labeled also with the Rsat IIE probe. Two-color in situ hybridizations with the satellite probes and rDNA revealed that the NOR chromosomes carried different satellites. Rsat I was abundant on chromosome 20 and 21, but it was undetectable on chromosomes 13 and 16. Large Rsat II arrays were found on chromosomes 16, 20 and 21, but reduced amount was detected on chromosome 13. The variant Rsat IIE was prominent on chromosome 16, but was absent from the other rDNA-bearing chromosomes. The rDNA signal on chromosome 21 was localized to the 21q(ter) region, what can be a useful cytological marker in comparative cytological studies. These data show that rabbit chromosomes form at least four distinct groups based on the satellite composition of their centromeres. The differences in the chromosomal distribution of satellite families will help easy FISH identification of individual chromosomes, as well as to unveil the evolutionary history of the Leporidae karyotype.  相似文献   

8.
We performed an investigation of two unrelated cases with extremal variants of chromosome 21 without visible materials of the short arms (Christchurch or Ch1 chromosome). In the first case chromosome 21p- was initially detected during routine cytogenetic amniocentesis. Chromosomal variant was inherited from phenotypically normal father to phenotypically normal fetus (phenotypically normal boy after the birth). The second case of chromosome 21p- was detected in 7 years old boy, referred to cytogenetic analysis due to mental retardation and mild congenital malformation, including prenatal hypoplasia, microcephaly, low-set dysplastic ears, short nose, micrognatia, short neck. Molecular characterization of 21p-variant chromosomes was performed by the use of FISH with DNA probes specific to the short arm and centromeric region of chromosome 21 (telomeric, beta-satellite, ribosomal, classical satellite and alphoid DNA probes). Chromosomes 21p-hybridized positively only with telomeric DNA at both chromosomal ends and alphoid DNA probes at centromeric region of the first patient. In second case (de novo deletion of 21p), the Ch1 was associated with clinical phenotype and loss of telomeric and subtelomeric DNA in the p-arm of chromosome 21. Therefore, the complete absent of the short arm of chromosome 21 may be considered as abnormal. We propose that de novo deletion 21p- could have negative consequences due to absence of large portion of chromosomal DNA from the p-arm (telomeric, satellite or ribosomal DNAs) and following imbalance in organization and functioning of genome.  相似文献   

9.
Ten phenotypically normal human individuals have been analysed by in situ treatments with restriction endonucleases in order to obtain a better characterization of some cryptic variants of acrocentric chromosomes. Treatments with AluI, NdeII and Sau 3AI confirm the existence of two cryptic amplified regions on the short arms of both one chromosome 15 and one chromosome 22, in one female. These amplifications seem to be of different origin involving the nucleolar organizer region of chromosome 15 and the satellite of chromosome 22.  相似文献   

10.
Satellite III DNA has been located by in situ hybridization in chromosomes 1, 3--5, 7, 9, 10, 13--18, 20--22, and Y and ribosomal DNA (rDNA) in the acrocentric chromosomes 13--15, 21, and 22. In the acrocentric chromosomes, the satellite DNA is located in the short arm. Here we report comparisons by in situ hybridization of the amount of satellite DNA in Robertsonian translocation and "normal variant" chromosomes with that in their homologs. In almost all dicentric Robertsonian translocations, the amount of satellite DNA is less than that in the normal homologs, but it is rarely completely absent, indicating that satellite DNA is located between the centromere and the nucleolus organizer region (NOR) and that the breakpoints are within the satellite DNA. The amount of satellite DNA shows a range of variation in "normal" chromosomes, and this is still more extreme in "normal variant" chromosomes, those with large short arm (p+ or ph+) generally having more satellite DNA than those with small short arms (p- or ph-). The cytological satellites are heterogeneous in DNA content; some contain satellite DNA, others apparently do not, and the satellite DNA content is not related to the size or intensity of fluorescence of the satellites. The significance of these variations for the putative functions of satellite DNA is discussed.  相似文献   

11.
Summary The finding of heteromorphisms in certain regions of human chromosomes is useful in chromosome identification, especially in the study of the origin of nondisjunction. Quantitation of heteromorphisms in the smaller human chromosomes is theoretically valuable but remains technically difficult. In this paper we evaluate two methods for quantitation of human chromosome 21—visual and densitometric measurement of Q-banded 35-mm negatives. Thirteen parameters are defined for chromosome 21. We find three of them to show less variability between different measurements of the same cell and from cell to cell in the same individual: (1) the centromere index, defined as the ratio of length of the satellite, stalk, and short arm to the length of the satellite, stalk, and short and long arms; (2) the ratio of length of the satellite to the length of the total heteromorphic region of the short arm; and (3) the ratio of the short arm intensity to the intensity of band q21. Another parameter, the ratio of satellite intensity to the intensity of band q21, is reproducible by visual measurement but not by densitometry. Based on these studies we conclude that densitometry is not necessarily better than visual quantitation of the heteromorphic region of chromosome 21.  相似文献   

12.
Variant chromosomes are polymorphic in areas that are rich in repeat sequences such as the pericentromeric regions or in the acrocentric short arm regions. The dynamic nature of these regions is evident in the polymorphisms they exhibit. In this paper three unusual variants are described: a chromosome 21 with additional material on its short arm, a chromosome 7 with an insertion in the short arm and a chromosome 2 with satellites at the end of the long arm. All three variants were shown to involve acrocentric elements using special banding techniques and fluorescence in situ hybridization. The 21 variant was found to be a tricentric with a 21 and two 15 alpha-, two classical and three acrocentric beta-satellite signals interspersed by AgNOR-positive regions. The telomeres were present at the two terminal ends. The insertion on chromosome 7 was found to be C-band positive and to contain acrocentric beta-satellite DNA. However, acrocentric alpha-satellite, classical satellite, whole-chromosome-painting or all-telomeres sequence probes did not hybridize to the insertion. The satellited region of chromosome 2 had two C-bands, a small positive all-centromeres probe signal, and two signals for the beta-satellite probe. Sandwiched between the beta-satellite sequences was an AgNOR-positive region. The telomeres were present at the two ends of the satellited chromosome 2. Chromosome 2 subtelomeric probes hybridized to the terminal ends of the short and long arm of chromosome 2. The common thread in these three variants is the involvement of acrocentric short arm elements. The acrocentric short arm elements are shown to move to other acrocentric or nonacrocentric chromosomes and relocate to both terminal and interstitial positions. The integrations are stable and heritable. Received: 23 September 1997 / Accepted: 23 February 1998  相似文献   

13.
Summary A woman was found to have 42 autosomes due to engagement of both chromosomes 14 in Robertsonian rearrangements, one with a chromosome 21 and the other with a chromosome 22: t(14q21q) and t(14q22q). The two translocations appear monocentric and by silver staining have no rRNA activity. The t(14q21q) translocation is familial and was ascertained through a nephew with Down syndrome, while the origin of the t(14q22q) translocation was not established. In addition to these two translocations, the woman had XX/XXX sex chromosome mosaicism. She has had two recognized pregnancies, each resulting in the birth of a child with one of the two translocations. Both children are phenotypically normal, as is their mother, the first normal liveborn individual identified with two Robertsonian translocations.  相似文献   

14.
Sequential staining for G- and C-banding of acrocentric chromosomes of 8 persons showed that the large heterochromatin region occurred more frequently in chromosome 15 than in chromosomes 13 and 14, and in chromosome 22 more frequently than in chromosome 21. There proved to be no correlation between the size of the heterochromatic region and the short arm of the acrocentric chromosomes. The frequency of occurrence of the satellites in the 8 persons was approximately the same for all the acricentric pairs. The C-banded satellite region of the homologous chromosomes is often heteromorphic.  相似文献   

15.
The centromeric alpha satellite DNA subfamilies from chromosomes 13 and 21 are almost identical in sequence and cannot be easily distinguished by mean of probes for Southern blot or in situ hybridisation. We have used the oligonucleotide-primed in situ (PRINS) labelling technique with primers defined from the alpha satellite sequence of chromosome 13. One primer was found to label specifically the centromeric region of chromosomes 13 and allowed the detection of a polymorphism between two chromosome 13 homologues in one individual.  相似文献   

16.
Most mammalian chromosomes have satellite DNA sequences located at or near the centromeres, organized in arrays of variable size and higher order structure. The implications of these specific repetitive DNA sequences and their organization for centromere function are still quite cloudy. In contrast to most mammalian species, the domestic cat seems to have the major satellite DNA family (FA-SAT) localized primarily at the telomeres and secondarily at the centromeres of the chromosomes. In the present work, we analyzed chromosome preparations from a fibrosarcoma, in comparison with nontumor cells (epithelial tissue) from the same individual, by in situ hybridization of the FA-SAT cat satellite DNA family. This repetitive sequence was found to be amplified in the cat tumor chromosomes analyzed. The amplification of these satellite DNA sequences in the cat chromosomes with variable number and appearance (marker chromosomes) is discussed and might be related to mitotic instability, which could explain the exhibition of complex patterns of chromosome aberrations detected in the fibrosarcoma analyzed.  相似文献   

17.
Summary Disomic and trisomic cells of a patient with Down syndrome mosaic were used to study the effect of the additional chromosome 21 against an identical genetic background. The frequency of Ag staining and the participation in satellite associations were determined for each pair of acrocentric chromosomes. The additional chromosome 21 of the trisomic cells and its homologues proved to be regularly Ag positive. Therefore the trisomic cells showed more Ag positive chromosomes and more satellite associations per cell than the diploid cells. Thus, no compensation for the additional rRNA-gene dose could be found in the cells of the trisomic line.  相似文献   

18.
Autoradiographic studies of the human Y chromosome   总被引:1,自引:0,他引:1  
An autoradiographic analysis (using continuous labeling with tritiated thymidine) was made on 317 cells from four normal males. The labeling pattern of the Y chromosome was compared to the first and the last chromosomes to complete replication as well as to G21–22. The Y chromosome was never found to be the last chromosome in the cell to complete replication. Instead, it completed DNA synthesis relatively early (usually among the first 10 chromosomes) but had a distinctively heavy label during the earliest stages of late-S. In 51% of those cells with one labeled G+Y chromosome, a G21–22 was labeled and the Y was not.—It was concluded, therefore, that the human Y chromosome is not a late-replicating chromosome but terminates replication earlier than most of the autosomes. In addition, the Y chromosome cannot be distinguished from the G chromosomes on the basis of a consistent and differential labeling pattern.Supported by USPHS Grant GM 15361.  相似文献   

19.
Summary Satellite associations and silver staining were analyzed in a normal woman carrying three s variants, on chromosomes 13, 21, and 22. Six of the acrocentric chromosomes were identified and a positive correlation between the parameters of satellite association frequency and positive silver staining was found for each chromosome. These parameters seem to depend on the presence and size of a secondary constriction and are unaffected by satellite size.  相似文献   

20.
Heterosexual chimerism among singleton females produced by multiple nonsexed embryo transfer (MNET singleton females) was investigated using chromosome typing and PCR (polymerase chain reaction)-amplification of male-specific DNA (msDNA). Of the 22 animals tested, 21 were classified as normal by both methods (i.e., showing no male cells among 100 metaphase spreads in chromosome typing and being msDNA negative in PCR). No morphological abnormalities of the genital organs were observed among 19 MNET single females. One MNET singleton female was, however, classified as a freemartin by PCR (male-specific DNA positive), but it was classified as normal cytogenetically. This individual probably had a low degree of heterosexual chimerism, and it seems that the chimerism derived from MNET was difficult to diagnose by chromosome typing, although it was detectable by PCR. The genital organs of this individual (15-mo-old Aberdeen Angus) were normal in form (both external and internal) and size. However, a very small structure, resembling seminiferous tubule, was found in the left ovary. It may be concluded that most MNET singleton females are expected to have normal reproductive function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号