首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 453 毫秒
1.
噬菌体展示技术的发展及应用   总被引:9,自引:0,他引:9  
高学良    赵群飞 《生命的化学》2001,21(5):432-433
噬菌体展示技术是一种用于筛选和改造功能性多肽的生物技术 ,编码多肽的DNA片段与噬菌体表面蛋白的编码基因融合后 ,以融合蛋白的形式在噬菌体的表面表达出多肽序列。这是一种表型与基因型的统一。噬菌体展示技术最初是以M 13噬菌体为载体的 ,其宿主菌为大肠杆菌。以大肠杆菌为宿主的展示系统还有其他 ,如λ噬菌体和T4噬菌体等展示系统。还有利用真核细胞的病毒以及酵母菌作为展示系统的。这些展示系统各有各的优势 ,但最常用的仍是M 13噬菌体表达系统。最初的噬菌体展示系统是将外源肽或蛋白质与噬菌体外壳蛋白PⅢ或PⅧ的N末端融…  相似文献   

2.
丝状噬菌体与噬菌体展示技术   总被引:1,自引:0,他引:1  
黄仪秀  朱圣庚   《微生物学通报》1997,24(5):296-300
丝状噬菌体的利用,在分子生物学研究以及基因工程发展中起了重大作用[1]。丝状噬菌体作为载体具有多方面的巨大应用潜力。1985年Smith[2]到最先将外源基因插入丝状噬菌体fl的基因Ⅲ,使目的基因编码的多肽能以融合蛋白的形式展水在噬菌体表面,从而创建了噬菌体展示技术。噬菌  相似文献   

3.
噬菌体展示技术及其在寄生虫研究中的应用   总被引:1,自引:0,他引:1  
噬菌体展示技术是将外源蛋白或多肽的编码基因或DNA序列插入到噬菌体外壳蛋白结构基因的适当位置,使外源基因随外壳蛋白的表达而表达,并随噬菌体的重新组装而展示到噬菌体表面的生物技术.在研究蛋白质识别或蛋白质与核酸相互作用的生物学过程、蛋白质定向改造、研制新型多肽药物、疫苗和抗体等多领域具有重要作用.就噬菌体展示技术基本原理及特点,以及噬菌体展示技术在寄生虫研究中的应用做一简要综述.  相似文献   

4.
噬菌粒载体是包含质粒复制起点的丝状噬菌体衍生载体。噬菌粒通常只编码一种丝状噬菌体的外壳蛋白,其他完成生命周期必须的结构和功能蛋白由辅助噬菌体提供。噬菌粒是噬菌体展示技术最常用的表达载体,它的诸多优点决定了噬菌粒在噬菌体展示领域中具有广阔的应用前景。文章概述了噬菌粒载体的结构、生命周期和主要元件,着重介绍了载体的优化策略及应用,最后对其应用前景进行了展望,以期为进一步优化和利用噬菌粒载体提供参考。  相似文献   

5.
噬菌体表面展示技术是一种将外源蛋白或抗体可变区与噬菌体表面特定蛋白质融合并展示于其表面,构建蛋白质或抗体库,并从中筛选特异蛋白质或抗体的基因工程技术。介绍这一技术的原理、相关展示系统以及在蛋白质相互作用的研究,抗体及疫苗的制备、多肽药物的研制等方面的应用潜力和独特的优点。  相似文献   

6.
噬菌体表面展示技术   总被引:2,自引:2,他引:0  
噬菌体表面展示技术是将编码外源肽或抗体的可变区DNA 片段插入噬菌体或噬菌粒的基因组中,以融合形式与噬菌体的表面蛋白共同表达于噬菌体表面,经过“吸附———洗脱———扩增”过程筛选并富集外源肽或 特异性抗体。其中噬菌体抗体库技术可以模拟体内抗体产生和成熟过程,不经细胞杂交,甚至不经免疫制备针对任何抗原的单克隆抗体  相似文献   

7.
噬菌体展示技术的原理和方法   总被引:3,自引:0,他引:3  
噬菌体展示(Phage display)最早是由George开始于 1 985年1.最先构建的噬菌体多肽或抗体展示文库则始于 1990年2,3.由此,噬菌体展示技术进入了一个飞速发展的时期。噬菌体展示的基本概念是将外源蛋白质或多肽的基因表达产物与噬菌体衣壳蛋白融合,并在其表面展示,同时将其遗传密码信息整合到个体噬菌体的基因组中。这个技术的最大优点是直接将可现的表达型与其基因型联系在一起,再利用其配体的特异性亲和力,将所感兴趣的蛋白质或多肽挑选出来。    相似文献   

8.
T4噬菌体表面展示技术的研究进展   总被引:4,自引:0,他引:4  
噬菌体表面展示技术(phage display)是由Smith于1985年首先建立起来的一种新的生物技术[1],它能将表达的外源多肽或蛋白以融合蛋白的形式展示在噬菌体的表面,保持相对独立的空间构象和原有的生物活性[2].常用的噬菌体表面展示系统主要有丝状噬菌体、λ噬菌体及T4噬菌体展示系统等.虽然它们都具有噬菌体展示系统的优点,但对于丝状噬菌体来说,它不能展示那些难以分泌的肽和蛋白质,而且它的N端可融合外源多肽的容量有限,较大蛋白的融合会造成空间障碍,影响噬菌体的装配,使其失去感染力.而对于λ噬菌体,大分子蛋白的融合会抑制噬菌体的组装,使其生长受到影响,因此这两种噬菌体更适用于构建短肽库和cDNA表达文库[3],而不适于构建重组疫苗和表达分子量大具有完整结构域的蛋白质[4,5].  相似文献   

9.
噬菌体展示技术是将编码外源蛋白或多肽的基因片段定向插入到噬菌体的外壳蛋白基因区,使外源蛋白或多肽通过与噬菌体外壳蛋白融合而表达并展示于噬菌体表面,进而筛选表达特异蛋白或多肽的噬菌体,已发展成为生物学后基因组时代一个强有力的实验技术.噬菌体展示文库的筛选是其关键环节.为了提高筛选效率,许多研究者对传统的筛选技术进行了改进,如选择性感染噬菌体、迟延感染性噬菌体、以DNA为基础的筛选方法、亲合力捕获和反复筛选和封闭筛选法等,用于筛选的靶标也越来越具有多样性,使得这一技术有了更加广阔的发展前景.  相似文献   

10.
利用pHEN1KM13噬菌粒系统表达融合蛋白,进而确定大分子量重组蛋白在丝状噬菌体表达的部位及其表达后的生物活性。通过蛋白酶切处理前后噬菌体侵染细菌能力的变化快速地检测大分子蛋白质能否在噬菌体表面展示表达;比较了谷胱甘肽S转移酶及其与三个不同长度连接臂融合的外源蛋白在噬菌体表面的表达和组装,确定了不大于40kD的重组蛋白分子能展示表达在丝状噬菌体表面;并利用已知的小分子化合物与蛋白质的相互作用证明了组装在噬菌体表面的谷胱甘肽S转移酶重组蛋白仍保持其天然的结合活性,为利用噬菌体展示系统研究蛋白质与小分子化合物的相互作用建立了基础。  相似文献   

11.
Legendre D  Fastrez J 《Gene》2002,290(1-2):203-215
Phage display has evolved during the past 15 years as a powerful technique to select, from libraries of peptides or proteins, binders for various targets or to evolve new functions in proteins. In recent years, the knowledge acquired in phage display technology was exploited to engineer phages as vehicles for receptor-mediated gene delivery. The first vectors generated provided the proof of the concept that development of gene delivery vehicles based on phages was feasible. Results obtained showed that the level of receptor ligand display was an essential factor that determines the efficiency of transduction and suggested that phagemids might be more appropriate than phages for gene delivery. However, due to the limitations of the existing display systems, vectors constructed up to now allowed only relatively low levels of ligand display. The transduction efficiency of these vectors was relatively poor. Here, we describe the construction and optimization of a new phagemid display system that was designed to allow the functional selection of peptides that promote gene delivery from phagemids in a high display format. Peptides are displayed on every copy of the major coat protein pVIII and are expressed from the phagemid itself. The phagemid is rescued as particles by a modified R408 helper phage, deficient in pVIII production. Besides an expression cassette for pVIII, the phagemid also contains the SV40 origin of replication, the GFP gene and the neomycin resistance marker. As a model we constructed a library of octapeptides and showed that the library is amenable to selection on cos-7 cells. Several selection approaches were investigated and a preliminary analysis of the peptides selected was carried out.  相似文献   

12.
Phage display is a widely used technology for the isolation of peptides and proteins with specific binding properties from large libraries of these molecules. A drawback of the common phagemid/helper phage systems is the high infective background of phages that do not display the protein of interest, but are propagated due to non-specific binding to selection targets. This and the enhanced growth rates of bacteria harboring aberrant phagemids not expressing recombinant proteins leads to a serious decrease in selection efficiency. Here we describe a VCSM13-derived helper phage that circumvents this problem, because it lacks the genetic information for the infectivity domains of phage coat protein pIII. Rescue of a library with this novel CT helper phage yields phages that are only infectious when they contain a phagemid-encoded pIII-fusion protein, since phages without a displayed protein carry truncated pIII only and are lost upon re-infection. Importantly, the CT helper phage can be produced in quantities similar to the VCSM13 helper phage. The superiority of CT over VCSM13 during selection was demonstrated by a higher percentage of positive clones isolated from an antibody library after two selection rounds on a complex cellular target. We conclude that the CT helper phage considerably improves the efficiency of selections using phagemid-based protein libraries.  相似文献   

13.
A novel adapter-directed phage display system was developed with modular features. In this system, the target protein is expressed as a fusion protein consisting of adapter GR1 from the phagemid vector, while the recombinant phage coat protein is expressed as a fusion protein consisting of adapter GR2 in the helper phage vector. Surface display of the target protein is accomplished through specific heterodimerization of GR1 and GR2 adapters, followed by incorporation of the heterodimers into phage particles. A series of engineered helper phages were constructed to facilitate both display valency and formats, based on various phage coat proteins. As the target protein is independent of a specific phage coat protein, this modular system allows the target protein to be displayed on any given phage coat protein and allows various display formats from the same vector without the need for reengineering. Here, we demonstrate the shuttling display of a single-chain Fv antibody on phage surfaces between multivalent and monovalent formats, as well as the shuttling display of an antigen-binding fragment molecule on phage coat proteins pIII, pVII, and pVIII using the same phagemid vectors combined with different helper phage vectors. This adapter-directed display concept has been applied to eukaryotic yeast surface display and to a novel cross-species display that can shuttle between prokaryotic phage and eukaryotic yeast systems.  相似文献   

14.
Eliminating helper phage from phage display   总被引:1,自引:0,他引:1       下载免费PDF全文
Phage display technology involves the display of proteins or peptides, as coat protein fusions, on the surface of a phage or phagemid particles. Using standard technology, helper phage are essential for the replication and assembly of phagemid particles, during library production and biopanning. We have eliminated the need to add helper phage by using 'bacterial packaging cell lines' that provide the same functions. These cell lines contain M13-based helper plasmids that express phage packaging proteins which assemble phagemid particles as efficiently as helper phage, but without helper phage contamination. This results in genetically pure phagemid particle preparations. Furthermore, by using constructs differing in the form of gene 3 that they contain, we have shown that the display, from a single library, can be modulated between monovalent (phagemid-like) and multivalent display (phage-like) without any further engineering. These packaging cells eliminate the use of helper phage from phagemid-based selection protocols; reducing the amount of technical preparation, facilitating automation, optimizing selections by matching display levels to diversity, and effectively using the packaged phagemid particles as means to transfer genetic information at an efficiency approaching 100%.  相似文献   

15.
Extracellular proteins are involved in many diverse and essential cell functions and in pathogenic bacteria, and they may also serve as virulence factors. Therefore, there is a need for methods that identify the genes encoding this group of proteins in a bacterial genome. Here, we present such a method based on the phage display technology. A novel gene III-based phagemid vector, pG3DSS, was constructed that lacks the signal sequence which normally orientates the encoded fusion protein to the Escherichia coli cell membrane, where it is assembled into the phage particle. When randomly fragmented DNA is inserted into this vector, only phagemids containing an insert encoding a signal sequence will give rise to phage particles displaying a fusion protein. These phages also display an E-tag epitope in fusion with protein III, which enables isolation of phages displaying a fusion protein, using antibodies against the epitope. From a library constructed from Staphylococcus aureus chromosomal DNA, genes encoding secreted as well as transmembrane proteins were isolated, including adhesins, enzymes and transport proteins.  相似文献   

16.
Phage display has been instrumental in discovery of novel binding peptides and folded domains for the past two decades. We recently reported a novel pIX phagemid display system that is characterized by a strong preference for phagemid packaging combined with low display levels, two key features that support highly efficient affinity selection. However, high diversity in selected repertoires are intimately coupled to high display levels during initial selection rounds. To incorporate this additional feature into the pIX display system, we have developed a novel helper phage termed DeltaPhage that allows for high-valence display on pIX. This was obtained by inserting two amber mutations close to the pIX start codon, but after the pVII translational stop, conditionally inactivating the helper phage encoded pIX. Until now, the general notion has been that display on pIX is dependent on wild-type complementation, making high-valence display unachievable. However, we found that DeltaPhage does facilitate high-valence pIX display when used with a non-suppressor host. Here, we report a side-by-side comparison with pIII display, and we find that this novel helper phage complements existing pIX phagemid display systems to allow both low and high-valence display, making pIX display a complete and efficient alternative to existing pIII phagemid display systems.  相似文献   

17.
Faix PH  Burg MA  Gonzales M  Ravey EP  Baird A  Larocca D 《BioTechniques》2004,36(6):1018-22, 1024, 1026-9
Phage display technologies are powerful tools for selecting binding ligands against purified molecular targets, live cells, and organ vasculature. However, the selection of natural ligands using phage display has been limited because of significant problems associated with the display of complex cDNA repertoires. Here we describe the use of cDNA fragmentation and open reading frame (ORF) selection to display a human placental cDNA library on the pIII coat protein of filamentous phage. The library was enriched for ORFs by selecting cDNA-beta-lactamase fusion proteins on ampicillin, resulting in a cDNA population having 97% ORFs. The ORF-selected cDNAs were fused to pIII in the phagemid vector, pUCMG4CT-198, and the library was rescued with a pIII-deleted helper phage for multivalent display. The resulting phagemid particle library consisted of 87% ORFs, compared to only 6% ORFs when prepared without ORF selection. Western blot analysis indicated cDNA-pIII fusion protein expression in eight out of nine ORF clones tested, and seven of the ORF encoded peptides were displayed multivalently. The high level of cDNA expression obtained by ORF selection suggests that ORF-enriched phage cDNA libraries prepared by these methods will be useful as functional genomics tools for identifying natural ligands from various source tissues.  相似文献   

18.
Abstract Phagemid vectors for display of proteins/peptides on the surface of filamentous phage utilize a plasmid genome carrying the phage origin of replication, along with the gene fused to a fragment of gene III. Generation of phage particles displaying the fusion protein also requires superinfection of the host bacterium with a helper virus. We describe here the construction of a new gene III mutant of M13 KO7 bacteriophage and compare its ability to act as helper phage with two mutants derived from Fd tet (fKN 16 and fCA 55). Furthermore, we investigate their capability to act as helper phages in SAP selection, where non-infectious helper phage, expressing antibody fragments but not protein 3, can still infect by first reacting with a soluble antigen-protein 3 fusion protein. Gene III mutants were found to be non-infectious, and high titers of infective particles were obtained only when the helper phage was grown in cells harbouring a gene III-containing plasmid. An amplification of the phage titer of 106× was achieved in M13-derived phages, when used for the selection of specific antibody fragments.  相似文献   

19.
噬菌体短肽库是将随机合成的寡核苷酸序列通过与单链噬菌体外壳蛋白基因融合,从而将随机短肽表达于噬菌体的表面。将体外随机化学合成的寡聚核苷酸序列重组到单价噬菌体表达载体,构建了噬菌体短肽库,证明其库容为2×10 ̄7集落形成单位(cfu),重组率为93%。同时将11个随机克隆进行序列测定,证实其寡聚核苷酸序列和氨基酸的分布几乎是完全随机的,其多样性可以满足特异性短肽筛选的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号