首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for measuring nicotinamide-adenine dinucleotide by enzymatic cycling is described which uses malic and alcohol dehydrogenases (EC 1.1.1.37, and EC 1.1.1.1) for the enzyme couple. After cycling, malate is measured with either malic dehydrogenase or malic enzyme (EC 1.1.1.40). The method has a number of advantages compared to those previously described. The cycling rate is high (greater than 30 000/hr); blank values are low; the reaction is linear over a wide range of NAD concentrations; and the terminal indicator reaction requires only one step. In addition the system is well suited for double cycling. This was shown by measurements of NAD in nuclei and cytoplasm from single dorsal root ganglion cells (rabbit). The overall amplification in this case was about 1 000 000.  相似文献   

2.
A simple enzymatic method is described for the measurement of NMN pyrophosphorylase in tissue homogenates at levels as low as 10(-12) to 10(-9) mol. The product, nicotinamide mononucleotide, is converted to NAD using NAD pyrophosphorylase and the NAD is quantified in an enzymatic cycling assay. The enzyme described here is stimulated more at low concentrations of Mn2+ than Mg2+. ATP is not required for NMN pyrophosphorylase activity; the reaction is neither stimulated nor inhibited by ATP concentrations as high as 3 mM. The enzyme is totally dependent on phosphoribosylpyrophosphate. The method is highly reproducible in all tissues examined. Various cell lines and tissues from mouse were analyzed for NMN pyrophosphorylase.  相似文献   

3.
An enzymatic determination method for galactosylceramide galactosidase (EC 3.2.1.46) was devised by using an enzymatic amplification reaction, NAD cycling. Galactose released by crude enzyme samples (tissue homogenates and cell suspensions) from galactosylceramide quantitatively reduced NAD to NADH by the galactose dehydrogenase reaction; then the NADH was amplified 6000-10,000-fold by NAD cycling and determined fluorometrically. A higher sensitivity of assay was obtained compared with the previous radiometric method. The present method was successfully applied to tissues from patients with Krabbe's disease, whose organs are deficient in galactosidase. The galactosidase reaction rate with a crude sample was not proportional to its concentration. However, the double-reciprocal plot of the reaction rate against the sample concentration became linear and provided a unique value of specific activity to each sample.  相似文献   

4.
A simple in situ model of alamethicin-permeabilized isolated rat liver mitochondria was used to investigate the channeling of NADH between mitochondrial malate dehydrogenase (MDH) and NADH:ubiquinone oxidoreductase (complex I). Alamethicin-induced pores in the mitochondrial inner membrane allow effective transport of low molecular mass components such as NAD+/NADH but not soluble proteins. Permeabilized mitochondria demonstrate high rates of respiration in the presence of malate/glutamate and NAD+ due to coupled reaction between MDH and complex I. In the presence of pyruvate and lactate dehydrogenase, an extramitochondrial competitive NADH utilizing system, respiration of permeabilized mitochondria with malate/glutamate and NAD+ was completely abolished. These data are in agreement with the free diffusion of NADH and do not support the suggestion of direct channeling of NADH from MDH to complex I.  相似文献   

5.
Control of reversible intracellular transfer of reducing potential.   总被引:1,自引:0,他引:1  
Isolated rat liver mitochondria were incubated in the presence of a reconstituted malate-aspartate shuttle under carboxylating conditions in the presence of glutamate, octanoyl-carnitine and pyruvate, or a preset lactate/pyruvate ratio. The respiration and attendant energy state were varied with soluble F1-ATPase. Under these conditions reducing equivalents are exported due to pyruvate carboxylation. This was shown by lactate production from pyruvate and by a substantial increase in the lactate/pyruvate ratio. This led to a competition between malate export and energy-driven malate cycling via the malate-aspartate shuttle, resulting in a lowered redox segregation of the NAD systems between the mitochondrial and extramitochondrial spaces. If pyruvate carboxylation was blocked, this egress of reducing equivalents was also blocked, leading to an elevated value of redox segregation, delta G(redox) (in kJ) = -5.7 log(NAD+/NADHout)/(NAD+/NADHin) being then equal to approximately one-half of the membrane potential, in accordance with electrogenic glutamate/aspartate exchange. Reconstitution of malate-pyruvate cycling led to a further kinetic decrease in the original malate-aspartate shuttle-driven value of delta G(redox). Therefore, the value of segregation of reducing potential between mitochondria and cytosol caused by glutamate/aspartate exchange can be diminished kinetically by processes exporting reducing equivalents from mitochondria, such as pyruvate carboxylation and pyruvate cycling.  相似文献   

6.
Mitochondrial malate dehydrogenase is activated by high concentrations of L-malate. In this paper, several factors affecting this activation on chicken liver enzyme have been investigated. The results obtained show clearly that this phenomenon is an intrinsic property of this enzyme since it does not depend on pH or ionic strength of the reaction medium. However, L-malate activation decreases when NAD+ concentration diminishes (5mM----0.2 mM) in such a way that when NAD+ concentration is 0.2 mM, L-malate does not activate mitochondrial malate dehydrogenase. On the other hand, several activators of this enzymatic system, such as citrate or phosphate, also produce the elimination of this activation by L-malate; in this case, the phenomenon seems be due to a competitive binding to a regulatory site of the different metabolites implied.  相似文献   

7.
The dicarboxylate radical -OOC--CH--CH(OH)COO- was generated in an N2O-saturated fumarate solution by high energy ionizing radiation. When NADH was present in the solution, product analysis indicated a stoichiometry of 2 molecules of the radical reacted with 1 NADH molecule to form 2 malate and 1 enzymatically active NAD+ molecules. In a similar experiment using tritium label on position A of NADH, due to an isotope effect, only 10% of the label was transferred to malate; most of the remaining tritium was found in the NAD+ formed. When lactate dehydrogenase was added, however, no la bel was detectable in NAD+, and over 80% of the tritium lost from NADH was found in malate. The stereospecific transfer of the hydrogen atom from lactate dehydrogenase-bound NADH to the dicarboxylate radical suggested that the free radical reaction must have taken place at the active site. The hydrogen atom transfer was inhibited by oxamate. Results from flow experiments in which an irradiated fumarate solution was mixed with a solutionof lactate dehydrogenase and NADH are in support of a mechanism in which the hydrogen atom transfer occurs in the first oxidation step.  相似文献   

8.
Mycobacterium tuberculosis H37Rv, the slow-growing human pathogenic strain of tubercle bacilli and Mycobacterium smegmatis and Mycobacterium phlei, the fast-growing saprophytes, have shown variations regarding the type of dehydrogenase that initiates malate oxidation in the respiratory chain. M. tuberculosis H37Rv is characterized by having a malate oxidase system (designated MALNAD pathway) in which malate oxidation is mediated by the NAD+-dependent malate dehydrogenase (EC 1.1.1.37) but not by FAD-dependent malate-vitamin K reductase. M. smegmatis possesses a different malate oxidase system (designated MALFAD pathway) in which malate oxidation is exclusively carried out by the FAD-dependent malate-vitamin K reductase because NAD+-dependent malate dehydrogenase is absent in this organism. M. phlei has a mixed system of malate oxidase (designated MALNAD+FAD pathways) in which both the NAD+-and FAD-dependent dehydrogenases take part. In all the three systems, the rest of the electron transport chain is common.  相似文献   

9.
1. Kidney-cortex slices from starved rats were incubated with l-[U-(14)C]lactate or l-[U-(14)C]malate plus unlabelled acetate and the specific radioactivity of the glucose formed was determined. In parallel experiments the specific radioactivity of the glucose formed from [1-(14)C]acetate plus unlabelled l-lactate and l-malate was determined. 2. By analytical methods the major products formed from the substrates were measured. The glucose formed was purified by paper chromatography for determination of specific radioactivity. 3. The specific radioactivity of the glucose formed from l-[U-(14)C]lactate agrees with predictions of a model based on interaction of the gluconeogenic and the oxidative pathways. 4. The specific radioactivity of the glucose formed from l-[U-(14)C]malate agrees with the predicted value if rapid malate exchange between the cytosol and mitochondria is assumed. 5. The rate of malate exchange between compartments was estimated to be rapid and at least several times the rate of glucose formation. 6. The specific radioactivity of the glucose formed from [1-(14)C]acetate plus unlabelled l-lactate or l-malate agrees with the predictions from the model, again assuming rapid malate exchange between compartments. 7. Malate exchange between compartments together with reversible malate dehydrogenase activity in the mitochondria and cytosol also tends to equilibrate isotopically the NADH pool in these compartments. (3)H from compounds such as l-[2-(3)H]lactate, which form NAD(3)H in the cytosol, appears in part in water; and (3)H from dl-beta-hydroxy[3-(3)H]butyrate, which forms NAD(3)H in the mitochondria, appears in part in glucose, largely on C-4.  相似文献   

10.
It has been previously shown that triglycerides can be specifically hydrolyzed by lipase from Rhizopus arrhizus in the presence of hog liver esterase and sodium dodecyl sulfate. The glycerol produced can then be measured by sequential reactions with glycerokinase, pyruvate kinase, and lactate dehydrogenase: glycerol and ATP are converted to glycerol-3-phosphate and ADP by glycerokinase; the ADP reacts with phosphoenolpyruvate and pyruvate kinase to yield pyruvate; the pyruvate is converted to lactate with lactate dehydrogenase, and the cofactor NAD+ is simultaneously reduced to NADH. This report describes procedures by which either the disappearance of NADH or the appearance of NAD+ was determined fluorometrically, with 10- to 100-fold greater sensitivity than by spectrophotometry. In addition, enzymatic cycling of NAD+ was used to increase the sensitivity of the assay over 1000-fold, and thereby provided accurate measurement of less than 1 ng of triglyceride. Results obtained from the three fluorometric methods were highly correlated with an automated periodate oxidation method using serum samples and lipid extracts of muscle tissue.  相似文献   

11.
Characterisation of a highly hydrophobically modified lactate dehydrogenase   总被引:1,自引:0,他引:1  
1. Lysine residues of porcine H4 lactate dehydrogenase (L-lactate:NAD+ oxidoreductase EC 1.1.1.27) were modified with methyl-epsilon-(N-2,4-dinitrophenyl)aminocaproimidate - HCl. With increasing incorporation of the reagent a linear decrease of enzymatic activity was noticed. No essential lysyl group with an extraordinary reactivity was modified. 2. The active forms of the modified enzyme with different incorporation values were separated from denatured material by fractional precipitation and gel chromatography. An epsilon-(N-2,4-dinitrophenyl)aminocaproamidinate lactate dehydrogenase was obtained with an average incorporation of 38 groups per tetramer and a residual activity of 42%. This material proved to be homogenous in cellulose electrophoresis. 3. The epsilon-(N-2,4-dinitrophenyl)aminocaproamidinate lactate dehydrogenase is soluble only in glycine buffer at pH 8 and can be stabilized as ternary complex with NAD+ and sodium sulfite. Gel chromatography and ORD measurements show no strong conformational change. 4. epsilon-(N-2,4-dinitrophenyl)aminocaproamidinate lactate dehydrogenase has similar Km values for pyruvate, NADH, lactate and NAD+ as the native enzyme, and shows a lower thermostability due to a diminished stabilization by the hydrate layer on the surface.  相似文献   

12.
Summary Enzymatic cycling provides a methodology for virtually unlimited amplification of analytical sensitivity. The most widely applicable cycling systems are those for NAD and NADP, since these can be used to increase the sensitivity of methods for a host of other substances. However, cycling systems for ATP plus ADP, GTP+ GDP, glutathione and coenzyme A have also proven tb be very useful.A total of 19 cycling procedures are described in greater or lesser detail. Some of these are capable of amplification rates in excess of 20,000 per hour in a single cycling step (20,000 × 20,000 with two one hour cycling steps). Advantages, disadvantages, limitations and other practical considerations are stressed, as well as the means for coupling the cycling systems to assays for other substances.  相似文献   

13.
We have developed a simple, precise, and ultrasensitive enzymatic method for measuring serum mevalonic acid (MVA) concentration, which is thought to be a good indicator of the in vivo cholesterol biosynthesis rate. This assay is based on an enzyme cycling reaction and makes use of HMG-CoA reductase (HMGR), thio-NAD, NADH, and CoA. MVA participates in the HMGR cycling reaction, and its level is measured based on the production of thio-NADH, which is determined from the change in absorbance at 405 nm. To achieve high specificity, we used mevalonate kinase (MVK) in addition to HMGR. Only substrates able to participate in both the HMGR cycling reaction and the MVK reaction are measured as MVA. The detection limit for MVA is 0.4 ng/ml (2.7 nmol/l), and the calibration curve for MVA is linear up to 44 ng/ml (300 nmol/l). Regression analysis with 40 serum samples showed the accuracy of quantifying MVA with this enzymatic assay to be comparable to that using LC-MS/MS (correlation: y = 0.83x + 0.24; r = 0.97). This procedure is simple, precise, and robust. It is also rapid and has a high throughput, making it potentially useful for clinical applications.  相似文献   

14.
Pantothenate synthetase (PS; EC 6.3.2.1), encoded by the panC gene, catalyzes the essential adenosine triphosphate (ATP)-dependent condensation of D-pantoate and beta-alanine to form pantothenate in bacteria, yeast, and plants; pantothenate is a key precursor for the biosynthesis of coenzyme A (CoA) and acyl carrier protein (ACP). Because the enzyme is absent in mammals and both CoA and ACP are essential cofactors for bacterial growth, PS is an attractive chemotherapeutic target. An automated high-throughput screen was developed to identify drugs that inhibit Mycobacterium tuberculosis PS. The activity of PS was measured spectrophotometrically through an enzymatic cascade involving myokinase, pyruvate kinase, and lactate dehydrogenase. The rate of PS ATP utilization was quantitated by the reduction of absorbance due to the oxidation of NADH to NAD+ by lactate dehydrogenase, which allowed for an internal control to detect interference from compounds that absorb at 340 nm. This coupled enzymatic reaction was used to screen 4080 compounds in a 96-well format. This discussion describes a novel inhibitor of PS that exhibits potential as an antimicrobial agent.  相似文献   

15.
Paradoxical effects of copper and manganese on brain mitochondrial function   总被引:3,自引:0,他引:3  
Heron P  Cousins K  Boyd C  Daya S 《Life sciences》2001,68(14):1575-1583
Defects in the mitochondrial genome have been associated with Parkinson's and Alzheimer's disease, and apoptosis can be triggered by the presence of energetically compromised mitochondria. Thus, in this study we have examined whether the divalent cations Cu2+ and Mn2+ could influence mitochondrial function in vitro. Mitochondrial electron transport was dose and time dependently reduced by Cu2+ to a greater extent with succinate as a substrate. Following a 60 min preincubation period, Mn2+ dose dependently inhibited electron transport to a greater extent with lactate and malate. In contrast, paradoxical effects were seen following a 5 min preincubation period with Mn2+. Cu2+ dose-dependently reduced NADH-dependent lactate dehydrogenase (LDH) activity, with almost complete inhibition apparent at 10 microM. An initial induction of LDH by 10 microM Mn2+ was partially reversed by higher concentrations of the metal. Cu2+ dose-dependently reduced flavin adenine dinucleotide (FAD)-dependent monoamine oxidase A (MAO-A) activity in a time-independent manner, with an IC50 value approximately 20 microM, whereas Mn2+ had no effect. In conclusion, it is proposed that Cu2+ and Mn2+ have differential effects on nicotinamide adenine dinucleotide (NAD) and FAD-dependent mitochondrial enzymes at the level of the essential cofactors. Cu2+ appears to exert an inhibitory effect on both NAD and FAD-dependent enzymes, but predominantly against the latter, including MAO-A and succinate dehydrogenase. The complex responses to Mn2+ may be due to dose-related effects on the interconversion of NAD and NADH and reversible enzymatic reactions employing this nucleotide cofactor.  相似文献   

16.
The results presented in this paper reveal the existence of three distinct menadione (2-methyl-1,4-naphthoquinone) reductases in mitochondria: NAD(P)H:(quinone-acceptor) oxidoreductase (D,T-diaphorase), NADPH:(quinone-acceptor) oxidoreductase, and NADH:(quinone-acceptor) oxidoreductase. All three enzymes reduce menadione in a two-electron step directly to the hydroquinone form. NADH-ubiquinone oxidoreductase (NADH dehydrogenase) and NAD(P)H azoreductase do not participate significantly in menadione reduction. In mitochondrial extracts, the menadione-induced NAD(P)H oxidation occurs beyond stoichiometric reduction of the quinone and is accompanied by O2 consumption. Benzoquinone is reduced more rapidly than menadione but does not undergo redox cycling. In intact mitochondria, menadione triggers oxidation of intramitochondrial pyridine nucleotides, cyanide-insensitive O2 consumption, and a transient decrease of delta psi. In the presence of intramitochondrial Ca2+, the menadione-induced oxidation of pyridine nucleotides is accompanied by their hydrolysis, and Ca2+ is released from mitochondria. The menadione-induced Ca2+ release leaves mitochondria intact, provided excessive Ca2+ cycling is prevented. In both selenium-deficient and selenium-adequate mitochondria, menadione is equally effective in inducing oxidation of pyridine nucleotides and Ca2+ release. Thus, menadione-induced Ca2+ release is mediated predominantly by enzymatic two-electron reduction of menadione, and not by H2O2 generated by menadione-dependent redox cycling. Our findings argue against D,T-diaphorase being a control device that prevents quinone-dependent oxygen toxicity in mitochondria.  相似文献   

17.
Pyruvate phosphate dikinase (PPDK, EC 2.7.9.1) from the hyperthermophile Thermotoga maritima was biochemically characterized with the aim of establishing a colorimetric assay for inorganic pyrophosphate (PPi). When heterologously expressed in Escherichia coli, T. maritima PPDK (TmPPDK) was far more stable any other PPDK reported so far: it retained >90% of its activity after incubation for 1 h at 80 °C, and >80% of its activity after incubation for 20 min at pHs ranging from 6.5 to 10.5 (50 °C). In contrast to PPDKs from protozoa and plants, this TmPPDK showed very long-term stability at low temperature: full activity was retained even after storage for at least 2 years at 4 °C. TmPPDK was successfully applied to a novel colorimetric PPi assay, which employed (i) a PPi cycling reaction using TmPPDK and nicotinamide mononucleotide adenylyltransferase (EC 2.7.7.1) from Saccharomyces cerevisiae and (ii) a NAD cycling reaction to accumulate reduced nitroblue tetrazolium (diformazan). This enabled detection of 0.2 μM PPi, making this method applicable for preliminary measurement of PPi levels in PCR products in an automatic clinical analyzer.  相似文献   

18.
The kinetics of pyruvate phosphorylation by rabbit skeletal muscle pyruvate kinase (EC 2.7.1.40) has been studied with a coupled assay using P-enolpyruvate carboxylase (EC 4.1.1.31) and malate dehydrogenase (EC 1.1.1.37). The reaction sequence is (See journal for formula). Although the equilibrium of the pyruvate kinase reaction by itself strongly favors pyruvate production, the over-all equilibrium of this coupled system favors the depletion of pyruvate, thus greatly reducing the problem of back reaction during the assay. In addition, the oxidation of NADH by malate dehydrogenase makes it possible to monitor the system with a spectrophotometer. The Michaelis constant of pyruvate kinase was found to be 0.9 mM for ATP and 7 mM for pyruvate, values that agree reasonably well with earlier studies using direct assays. However, the maximum velocity is about 6 mumol of pyruvate phosphorylated/min/mg of enzyme, which is very much faster than that indicated by earlier studies. These results suggest that the metabolic significance of the reverse reaction of muscle pyruvate kinase may have been underestimated. In particular, the data given here suggest that its rate in vivo is probably comparable to the observed rate of glycogen synthesis from lactate, making possible glyconeogenesis in muscle by pyruvate kinase reversal without the need for an enzymatic bypass of the kind employed by liver and kidney.  相似文献   

19.
Hydroxypyrenetrisulfonate binds to pig mitochondrial malate dehydrogenase (L-malate: NAD+ oxidoreductase, EC 1.1.1.37) in the presence and absence of coenzymes with a stoichiometry of one dye molecule/enzyme subunit. Binding is competitive with substrates and known substrate analogs as well as with squaric acid, a newly detected analog forming a ternary complex with enzyme/NAD+ similar to enzyme/NAD+/sulfite. Displacement of hydroxypyrenetrisulfonate by substrates and analogs was used to determine dissociation constants of binary and ternary complexes. Binary complexes form with dissociation constants of about 10 mM. They may be important for kinetic studies at high substrate concentrations where oxaloacetate inhibition and malate activation have been described.  相似文献   

20.
An enzymatic cycling procedure for beta-NADP+ generated by the enzyme 3'-phosphodiesterase, 2':3'-cyclic nucleotide (EC 3.1.4.37) from its substrate 2':3'-cyclic NADP+ is described. The enzymes glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and diaphorase (EC 1.8.1.4) are used to cycle the cofactor between its oxidized and reduced forms in the presence of glucose-6-phosphate and p-iodonitrotetrazolium violet (INT) with the concomitant production of colored INT-formazan, monitored at 492 nm. The amplification is about 400-fold per hour and is sensitive enough to detect 6 x 10(-13) mol of NADP(H). A simple procedure for the optimization of this cycling assay is also described. Conjugates to 3'-phosphodiesterase, 2':3'-cyclic nucleotide may be used in heterogeneous enzyme immunoassays for the detection of small quantities of haptens or proteins in biological fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号