首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Leptin biosynthesis in adipose cells in vivo is increased by food intake and decreased by food deprivation. However, the mechanism that couples leptin production to food intake remains unknown. We found that addition of leucine to isolated rat adipocytes significantly increased leptin production by these cells, suggesting that postprandial leptin levels may be directly regulated by dietary leucine. The effect of leucine was inhibited by rapamycin and not by actinomycin D. Besides, leucine administration did not increase the amount of leptin mRNA in adipocytes. Therefore, we concluded that leucine activates leptin expression in adipose cells at the level of translation via a mammalian target of rapamycin (mTOR)-mediated pathway. Because leptin is a secreted protein, its biosynthesis is compartmentalized on the endoplasmic reticulum. To analyze mTOR signaling in this subcellular fraction, we separated adipose cells by centrifugation into a heavy membrane fraction that includes virtually all endoplasmic reticulum and the cytosolic extract. Phosphorylation of the major mTOR targets, the ribosomal protein S6 and the translational inhibitor 4E-binding protein (BP)/phosphorylated heat- and acid-stable protein (PHAS)-1, was stimulated by leucine in the cytosolic extract, whereas, in the heavy fraction, S6 was constitutively phosphorylated and leucine only induced phosphorylation of 4E-BP/PHAS-1. We also found that 60-70% of leptin mRNA was stably associated with the heavy fraction, and leucine administration did not change the ratio between compartmentalized and free cytoplasmic leptin mRNA. We suggest that, in adipose cells, a predominant part of leptin mRNA is compartmentalized on the endoplasmic reticulum, and leucine activates translation of these messages via the mTOR/4E-BP/PHAS-1-mediated signaling pathway.  相似文献   

2.
Poliovirus RNA replication occurs on the surface of membranous vesicles that proliferate throughout the cytoplasm of the infected cell. Since at least some of these vesicles are thought to originate within the secretory pathway of the host cell, we examined the effect of poliovirus infection on protein transport through the secretory pathway. We found that transport of both plasma membrane and secretory proteins was inhibited by poliovirus infection early in the infectious cycle. Transport inhibition did not require viral RNA replication or the inhibition of host cell translation by poliovirus. The viral proteins 2B and 3A were each sufficient to inhibit transport in the absence of viral infection. The intracellular localization of a secreted protein in the presence of 3A with the endoplasmic reticulum suggested that 3A directly blocks transport from the endoplasmic reticulum to the Golgi apparatus.  相似文献   

3.
Defective plasma membrane assembly in yeast secretory mutants.   总被引:11,自引:2,他引:9       下载免费PDF全文
Yeast mutants that are conditionally blocked at distinctive steps in secretion and export of cell surface proteins have been used to monitor assembly of integral plasma membrane proteins. Mutants blocked in transport from the endoplasmic reticulum (sec18), from the Golgi body (sec7 and sec14), and in transport of secretory vesicles (sec1) show dramatically reduced assembly of galactose and arginine permease activities. Simultaneous induction of galactose permease and alpha-galactosidase (a secreted glycoprotein) in sec mutant cells at the nonpermissive temperature (37 degrees C) shows that both activities accumulate and can be exported coordinately when cells are returned to the permissive temperature (24 degrees C) in the presence or absence of cycloheximide. Plasma membrane fractions isolated from sec mutant cells radiolabeled at 37 degrees C have been analyzed by two-dimensional sodium dodecyl sulfate-gel electrophoresis. Although most of the major protein species seen in plasma membranes from wild-type cells are not efficiently localized in sec18 or sec7, several of these proteins appear in plasma membranes from sec1 cells. These results may be explained by contamination of plasma membrane fractions with precursor vesicles that accumulate in sec1 cells. Alternatively, some proteins may branch off during transport along the secretory pathway and be inserted into the plasma membrane by a different mechanism.  相似文献   

4.
The biosynthesis and turnover of lipoprotein lipase (LPL) have been investigated in adipose 3T3-F442A cells labeled with [35S]methionine. Pulse-chase experiments, endo-beta-N-acetylglucosaminidase H treatment, and analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis have indicated that LPL is synthesized in the endoplasmic reticulum as a glycoprotein of Mr = 55,500 bearing two N-oligosaccharide side chains of the high mannose-type. This precursor form of LPL is transported within 10 min to the Golgi apparatus, and this event is accompanied by the formation of a mature species of Mr = 58,000. Treatment of the Mr = 58,000 species with glycopeptidase F yielded a Mr = 51,000 protein similar to that observed after treatment of the Mr = 55,500 precursor form or after inhibition of N-glycosylation in tunicamycin-treated cells. The precursor form of LPL of Mr = 55,500 does not accumulate in the cells since, after a labeling period of 2 h, only the Mr = 58,000 species is detected. It is shown that only 20% of the newly synthesized molecules of Mr = 58,000 are constitutively secreted, whereas 80% are degraded, most likely in lysosomes, as indicated by the inhibitory effect of leupeptin upon the degradation process. Under heparin stimulation, quantitative secretion of the mature form of LPL takes place whereas the intracellular degradation is arrested. Heparin is able to mobilize intracellular LPL without changing the rate of LPL export from the endoplasmic reticulum to the cell surface. Sucrose gradient centrifugation of the material from intracellular cisternae shows that the Mr = 55,500 precursor form is present as a monomer (s = 4.1 S), whereas the Mr = 58,000 mature form is present as a homodimer (s = 6.8 S) to which LPL activity is associated. The results are interpreted as LPL being transiently stored under a dimeric form before its degradation. A sorting process of LPL in the Golgi apparatus, followed by its entry either mainly in a regulated pathway or in a constitutive pathway, is proposed.  相似文献   

5.
Pollen tube elongation depends on the secretion of large amounts of membrane and cell wall materials at the pollen tube tip to sustain rapid growth. A large family of RAS-related small GTPases, Rabs or Ypts, is known to regulate both anterograde and retrograde trafficking of transport vesicles between different endomembrane compartments and the plasma membrane in mammalian and yeast cells. Studies on the functional roles of analogous plant proteins are emerging. We report here that a tobacco pollen-predominant Rab2, NtRab2, functions in the secretory pathway between the endoplasmic reticulum and the Golgi in elongating pollen tubes. Green fluorescent protein-NtRab2 fusion protein localized to the Golgi bodies in elongating pollen tubes. Dominant-negative mutations in NtRab2 proteins inhibited their Golgi localization, blocked the delivery of Golgi-resident as well as plasmalemma and secreted proteins to their normal locations, and inhibited pollen tube growth. On the other hand, when green fluorescent protein-NtRab2 was over-expressed in transiently transformed leaf protoplasts and epidermal cells, in which NtRab2 mRNA have not been observed to accumulate to detectable levels, these proteins did not target efficiently to Golgi bodies. Together, these observations indicate that NtRab2 is important for trafficking between the endoplasmic reticulum and the Golgi bodies in pollen tubes and may be specialized to optimally support the high secretory demands in these tip growth cells.  相似文献   

6.
7.
8.
Summary In an investigation of the role of glucanases in modifying yeast cell walls at the location of new buds, vesicles derived from the endoplasmic reticulum, which are secreted locally into the cell wall of growing buds, and may be involved in the secretion of glucanases, have been isolated.In yeast, exo--1,3-glucanase is present both extra- and intracellularly. Exponentially growing cells contain at least 11% of the enzyme activity intracellularly (within the plasmalemma). Most of this intracellular glucanase is sedimentable. Of the three classes of subcellular particles that contain glucanase, one is almost completely absent from stationary phase cells and largely absent from cells of the late budding phase of the cell cycle. These particles were isolated from budding cells by combined differential and density gradient centrifugation. They contain exo- and endo--1,3-glucanases, mannan and protein. The isolate consists mainly of membrane-bounded vesicles with diameters corresponding to those of the secretory vesicles observed in situ. It is concluded that these particles are identical with the vesicles derived from the endoplasmic reticulum.  相似文献   

9.
To investigate the intracellular localization of endothelin in cultured endothelial cells, an immunocytochemical study was carried out by the post-embedding protein A-gold technique with endothelin-specific antiserum. Gold particles were seen on the rough endoplasmic reticulum, the Golgi cisternae, the Golgi vesicles, small vesicles beneath the cell membrane, and the lysosomes. By contrast, no secretory granules were observed. These results suggest that endothelin is secreted by a constitutive pathway and that the lysosome may play an important role in regulating the biological activity of endothelin.  相似文献   

10.
The intracellular localization of carotenoids in the fungus Neurospora crassa was examined after completion of photoinduced biosynthesis of these pigments. Differential centrifugation of cell homogenates yielded subcellular fractions which were characterized by activities of several marker enzymes for cell constituents and in part purified by subsequent sucrose density gradient centrifugation. Most (ca 58%) of the carotenoids were found to be localized in lipid globules, but substantial amounts are also associated with two membrane fractions that were rich in membranes of the endoplasmic reticulum as indicated by high activities of NADPH- and NADH—cytochrome c reductase. These results, along with the coincidence in the distribution of both carotenoids and activities of specific marker enzymes in the sucrose density gradients, led to the conclusion that apart from lipid globules, carotenoids are also localized in membranes of the endoplasmic reticulum.  相似文献   

11.
A novel type of membrane vesicles was formed in vitro from microsomes of Saccharomyces cerevisiae, which carries Dpm1p, an enzyme involved in dolichol-sugar synthesis, but not a typical secretory cargo. While COPII vesicles formed in vitro were sedimentable by centrifugation at 200,000g(max) for 15 min, the novel vesicles were not. However, they were sedimented by additional centrifugation at the same speed for 1 h. Immunoelectron microscopy showed that the Dpm1p-containing vesicles had small vesicular/saccular structures of around 40-50 nm in diameter. The addition of glycerol-3-phosphate and oleoyl-CoA, substrates for lipid biosynthesis, significantly enhanced the efficiency of vesicle budding in an ATP-dependent fashion. Dpm1p was localized to lipid droplets as well as endoplasmic reticulum. Fluorescence microscopy further showed that Dpm1p-GFP was present in restricted subregions in isolated lipid droplets. The possibility that the vesicles were intermediates from the endoplasmic reticulum to lipid droplets was examined, and their possible role is discussed.  相似文献   

12.
Classic studies of temperature-sensitive secretory (sec) mutants have demonstrated that secreted and plasma membrane proteins follow a common SEC pathway via the endoplasmic reticulum (ER), Golgi apparatus, and secretory vesicles to the cell periphery. The yeast protein Ist2p, which is synthesized from a localized mRNA, travels from the ER to the plasma membrane via a novel route that operates independently of the formation of coat protein complex II-coated vesicles. In this study, we show that the COOH-terminal domain of Ist2p is necessary and sufficient to mediate SEC18-independent sorting when it is positioned at the COOH terminus of different integral membrane proteins and exposed to the cytoplasm. This domain functions as a dominant plasma membrane localization determinant that overrides other protein sorting signals. Based on these observations, we suggest a local synthesis of Ist2p at cortical ER sites, from where the protein is sorted by a novel mechanism to the plasma membrane.  相似文献   

13.
Summary To investigate the intracellular localization of endothelin in cultured endothelial cells, an immunocytochemical study was carried out by the post-embedding protein A-gold technique with endothelin-specific antiserum. Gold particles were seen on the rough endoplasmic reticulum, the Golgi cisternae, the Golgi vesicles, small vesicles beneath the cell membrane, and the lysosomes. By contrast, no secretory granules were observed. These results suggest that endothelin is secreted by a constitutive pathway and that the lysosome may play an important role in regulating the biological activity of endothelin.  相似文献   

14.
L. Taiz  M. Murry  D. G. Robinson 《Planta》1983,158(6):534-539
In homogenates of stem sections from etiolated pea (Pisum sativum L.) seedlings, secretory vesicles can be separated from Golgi-apparatus cisternae by rate-zonal centrifugation in renografin gradients. Optically, two bands of turbidity are observed, the uppermost containing the secretory vesicles and the lower one the Golgi-apparatus cisternae. The absence of glutaraldehyde in the homogenizing medium has allowed the effective characterization of marker-enzyme activities. Golgi-apparatus cisternae have been recognized by the presence of inosine-diphosphatase and glucan-synthase I activities as well as by electron microscopy. In contrast, although secretory vesicles also bear inosine diphosphatase they do not appear to possess glucan-synthase activity. Three plasma-membrane markers, NPA-binding, glucan synthase II, and KCl,Mg2+-adenosine triphosphatase (pH 6.5), were not detected in secretory vesicles. Pulse-chase experiments with [3H]glucose support our designation of secretory vesicles and Golgi-cisternal fractions.Abbreviations ER endoplasmic reticulum - GSI, GSII glucan, synthase I, II, respectively - IDPase inosine diphosphatase - PM plasma membrane - SV(s) secretory vesicle(s)  相似文献   

15.
Vasopressin acts on renal collecting duct cells to stimulate translocation of aquaporin-2 (AQP2)-containing membrane vesicles from throughout the cytoplasm to the apical region. The vesicles fuse with the plasma membrane to increase water permeability. To identify the intracellular membrane compartments that contain AQP2, we carried out LC-MS/MS-based proteomic analysis of immunoisolated AQP2-containing intracellular vesicles from rat inner medullary collecting duct. Immunogold electron microscopy and immunoblotting confirmed heavy AQP2 labeling of immunoisolated vesicles. Vesicle proteins were separated by SDS-PAGE followed by in-gel trypsin digestion in consecutive gel slices and identification by LC-MS/MS. Identification of Rab GTPases 4, 5, 18, and 21 (associated with early endosomes); Rab7 (late endosomes); and Rab11 and Rab25 (recycling endosomes) indicate that a substantial fraction of intracellular AQP2 is present in endosomal compartments. In addition, several endosome-associated SNARE proteins were identified including syntaxin-7, syntaxin-12, syntaxin-13, Vti1a, vesicle-associated membrane protein 2, and vesicle-associated membrane protein 3. Rab3 was not found, however, either by mass spectrometry or immunoblotting, suggesting a relative lack of AQP2 in secretory vesicles. Additionally, we identified markers of the trans-Golgi network, components of the exocyst complex, and several motor proteins including myosin 1C, non-muscle myosins IIA and IIB, myosin VI, and myosin IXB. Beyond this, identification of multiple endoplasmic reticulum-resident proteins and ribosomal proteins indicated that a substantial fraction of intracellular AQP2 is present in rough endoplasmic reticulum. These results show that AQP2-containing vesicles are heterogeneous and that intracellular AQP2 resides chiefly in endosomes, trans-Golgi network, and rough endoplasmic reticulum.  相似文献   

16.
Fibroblast growth factor 2 (FGF-2) is a pro-angiogenic mediator that is secreted by both normal and neoplastic cells. Intriguingly, FGF-2 has been shown to be exported by an endoplasmic reticulum/Golgi-independent pathway; however, the molecular machinery mediating this process has remained elusive. Here we introduce a novel in vitro system that functionally reconstitutes FGF-2 secretion. Based on affinity-purified plasma membrane inside-out vesicles, we demonstrate post-translational membrane translocation of FGF-2 as shown by protease protection experiments. This process is blocked at low temperature but apparently does not appear to be driven by ATP hydrolysis. FGF-2 membrane translocation occurs in a unidirectional fashion requiring both integral and peripheral membrane proteins. These findings provide direct evidence that FGF-2 secretion is based on its direct translocation across the plasma membrane of mammalian cells. When galectin-1 and macrophage migration inhibitory factor, other proteins exported by unconventional means, were analyzed for translocation into plasma membrane inside-out vesicles, galectin-1 was found to be transported as efficiently as FGF-2. By contrast, migration inhibitory factor failed to traverse the membrane of inside-out vesicles. These findings establish the existence of multiple distinct secretory routes that are operational in the absence of a functional endoplasmic reticulum/Golgi system.  相似文献   

17.
Visfatin is released from 3T3-L1 adipocytes via a non-classical pathway   总被引:5,自引:0,他引:5  
Visfatin is a secretory protein which exerts insulin mimetic and proinflammatory effects, also functioning as an intracellular enzyme to produce NAD. Plasma visfatin levels and visfatin mRNA expression in adipose tissues are increased in obese subjects. Visfatin does not have a decent cleavable signal sequence, and the mechanism, that mediates release of visfatin from adipocytes, remains poorly understood. In this study, we demonstrate that visfatin is released abundantly into culture medium from 3T3-L1 adipocytes. Subcellular fractionation analysis showed that visfatin was localized in the cytosol, but not in nucleus, membrane, vesicles, or mitochondria fractions. Visfatin release was not reduced by Brefeldin A and Monensin, inhibitors of endoplasmic reticulum (ER)-Golgi-dependent secretion. In addition, visfatin was not released on microvesicles. These results suggest that visfatin should be released from 3T3-L1 adipocytes via an ER-Golgi or microvesicles independent pathway.  相似文献   

18.
Book reviews     
Eukaryotic cells contain hundreds of different lipid species that are not uniformly distributed among their membranes. For example, sphingolipids and sterols form gradients along the secretory pathway with the highest levels in the plasma membrane and the lowest in the endoplasmic reticulum. Moreover, lipids in late secretory organelles display asymmetric transbilayer arrangements with the aminophospholipids concentrated in the cytoplasmic leaflet. This lipid heterogeneity can be viewed as a manifestation of the fact that cells exploit the structural diversity of lipids in organizing intracellular membrane transport. Lipid immiscibility and the generation of phase-separated lipid domains provide a molecular basis for sorting membrane proteins into specific vesicular pathways. At the same time, energy-driven aminophospholipid transporters participate in membrane deformation during vesicle biogenesis. This review will focus on how selective membrane transport relies on a dynamic interplay between membrane lipids and proteins.  相似文献   

19.
We described whole cell and cell-free systems capable of inserting into membranes cytochrome P-450 and epoxide hydratase made under the direction of rat liver RNA. The systems have been used to study the pathways followed by newly made secretory and integral membrane proteins. The cell-free system contains Xenopus laevis embryo membranes, and demonstrates competition for a common receptor between cytochrome P-450 and epoxide hydratase, and normal secretory proteins: evidence is provided for differential membrane receptor affinity. Thus, synthesis of secretory and membrane proteins appears to involve a common initial pathway. Microinjection of rat liver RNA into whole oocytes suggests that membrane insertion is neither cell type nor species specific, because functional rat liver enzymes are found inserted in the endoplasmic reticulum of the frog cell. Nonetheless, insertion is highly selective since albumin and several other proteins made under the direction of the injected liver RNA are sequestered within membrane vesicles and are then secreted by the oocyte, whilst epoxide hydratase and cytochrome P-450 are inserted into membranes but are not secreted.  相似文献   

20.
Eukaryotic cells contain hundreds of different lipid species that are not uniformly distributed among their membranes. For example, sphingolipids and sterols form gradients along the secretory pathway with the highest levels in the plasma membrane and the lowest in the endoplasmic reticulum. Moreover, lipids in late secretory organelles display asymmetric transbilayer arrangements with the aminophospholipids concentrated in the cytoplasmic leaflet. This lipid heterogeneity can be viewed as a manifestation of the fact that cells exploit the structural diversity of lipids in organizing intracellular membrane transport. Lipid immiscibility and the generation of phase-separated lipid domains provide a molecular basis for sorting membrane proteins into specific vesicular pathways. At the same time, energy-driven aminophospholipid transporters participate in membrane deformation during vesicle biogenesis. This review will focus on how selective membrane transport relies on a dynamic interplay between membrane lipids and proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号