首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Induction of tenascin in healing wounds   总被引:18,自引:6,他引:12       下载免费PDF全文
《The Journal of cell biology》1988,107(6):2757-2767
The distribution of the extracellular matrix glycoprotein, tenascin, in normal skin and healing skin wounds in rats, has been investigated by immunohistochemistry. In normal skin, tenascin was sparsely distributed, predominantly in association with basement membranes. In wounds, there was a marked increase in the expression of tenascin at the wound edge in all levels of the skin. There was also particularly strong tenascin staining at the dermal-epidermal junction beneath migrating, proliferating epidermis. Tenascin was present throughout the matrix of the granulation tissue, which filled full-thickness wounds, but was not detectable in the scar after wound contraction was complete. The distribution of tenascin was spatially and temporally different from that of fibronectin, and tenascin appeared before laminin beneath migrating epidermis. Tenascin was not entirely codistributed with myofibroblasts, the contractile wound fibroblasts. In EM studies of wounds, tenascin was localized in the basal lamina at the dermal-epidermal junction, as well as in the extracellular matrix of the adjacent dermal stroma, where it was either distributed homogeneously or bound to the surface of collagen fibers. In cultured skin explants, in which epidermis migrated over the cut edge of the dermis, tenascin, but not fibronectin, appeared in the dermis underlying the migrating epithelium. This demonstrates that migrating, proliferating epidermis induces the production of tenascin. The results presented here suggest that tenascin is important in wound healing and is subject to quite different regulatory mechanisms than is fibronectin.  相似文献   

2.
Tenascins are extracellular matrix glycoproteins associated with cell motility, proliferation and differentiation. Tenascin-C inhibits cell spreading by binding to fibronectin; tenascin-R and tenascin-X also have anti-adhesive properties in vitro. Here we have studied the adhesion modulating properties of the most recently characterized tenascin, tenascin-W. C2C12 cells, a murine myoblast cell line, will form broad lamellipodia with stress fibers and focal adhesion complexes after culture on fibronectin. In contrast, C2C12 cells cultured on tenascin-W fail to spread and form stress fibers or focal adhesion complexes, and instead acquire a multipolar shape with short, actin-tipped pseudopodia. The same stellate morphology is observed when C2C12 cells are cultured on a mixture of fibronectin and tenascin-W, or on fibronectin in the presence of soluble tenascin-W. Tenascin-W combined with fibronectin also inhibits the spreading of mouse embryo fibroblasts when compared with cells cultured on fibronectin alone. The similarity between the adhesion modulating effects of tenascin-W and tenascin-C in vitro led us to study the possibility of tenascin-W compensating for tenascin-C in tenascin-C knockout mice, especially during epidermal wound healing. Dermal fibroblasts harvested from a tenascin-C knockout mouse express tenascin-W, but dermal fibroblasts taken from a wild type mouse do not. However, there is no upregulation of tenascin-W in the dermis of tenascin-C knockout mice, or in the granulation tissue of skin wounds in tenascin-C knockout animals. Similarly, tenascin-X is not upregulated in early wound granulation tissue in the tenascin-C knockout mice. Thus, tenascin-W is able to inhibit cell spreading in vitro and it is upregulated in dermal fibroblasts taken from the tenascin-C knockout mouse, but neither it nor tenascin-X are likely to compensate for missing tenascin-C during wound healing.  相似文献   

3.
Wound contraction can substantially reduce the amount of new tissue needed to reestablish organ integrity after tissue loss. Fibroblasts, rich in F-actin bundles, generate the force of wound contraction. Fibronectin-containing microfibrils link fibroblasts to each other and to collagen bundles and thereby provide transduction cables across the wound for contraction. The temporal relationships of F-actin bundle formation, collagen and fibronectin matrix assembly, and fibronectin receptor expression to wound contraction have not been determined. To establish these relationships, we used a cutaneous gaping wound model in outbred Yorkshire pigs. Granulation tissue filled approximately 80% of the wound space by day 5 after injury while wound contraction was first apparent at day 10. Neither actin bundles nor fibronectin receptors were observed in 5-d wound fibroblasts. Although fibronectin fibrils were assembled on the surfaces of 5-d fibroblasts, few fibrils coursed between cells. Day-7 fibroblasts stained strongly for nonmuscle-type F-actin bundles consistent with a contractile fibroblast phenotype. These cells expressed fibronectin receptors, were embedded in a fibronectin matrix that appeared to connect fibroblasts to the matrix and to each other, and were coaligned across the wound. Transmission EM confirmed the presence of microfilament bundles, cell-cell and cell-matrix linkages at day 7. Fibroblast coalignment, matrix interconnections, and actin bundles became more pronounced at days 10 and 14 coinciding with tissue contraction. These findings demonstrate that granulation tissue formation, F-actin bundle and fibronectin receptor expression in wound fibroblasts, and fibroblast-matrix linkage precede wound contraction.  相似文献   

4.
Xenopus froglets can perfectly heal skin wounds without scarring. To explore whether this capacity is maintained as development proceeds, we examined the cellular responses during the repair of skin injury in 8‐ and 15‐month‐old Xenopus laevis. The morphology and sequence of healing phases (i.e., inflammation, new tissue formation, and remodeling) were independent of age, while the timing was delayed in older frogs. At the beginning of postinjury, wound re‐epithelialization occurred in form of a thin epithelium followed by a multilayered epidermis containing cells with apoptotic patterns and keratinocytes stained by anti‐inducible nitric oxide synthase (iNOS) antibody. The inflammatory response, early activated by recruitment of blood cells immunoreactive to anti‐tumor necrosis factor (TNF)‐α, iNOS, transforming growth factor (TGF)‐β1, and matrix metalloproteinase (MMP)‐9, persisted over time. The dermis repaired by a granulation tissue with extensive angiogenesis, inflammatory cells, fibroblasts, and anti‐α‐SMA positive myofibroblasts. As the healing progressed, wounded areas displayed vascular regression, decrease in cellularity, and rearrangement of provisional matrix. The epidermis restored to a prewound morphology while granulation tissue was replaced by a fibrous tissue in a scar‐like pattern. The quantitative PCR analysis demonstrated an up‐regulated expression of Xenopus suppressor of cytokine signaling 3 (XSOCS-3) and Xenopus transforming growth factor-β2 (XTGF-β2) soon after wounding and peak levels were detected when granulation tissue was well developed with a large number of inflammatory cells. The findings indicate that X. laevis skin wound healing occurred by a combination of regeneration (in epidermis) and repair (in dermis) and, in contrast to froglet scarless wound healing, the growth to a more mature adult stage is associated with a decrease in regenerative capacity with scar‐like tissue formation. J. Morphol. 274:956–964, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
Distribution of the extracellular matrix glycoprotein tenascin during wound healing in mouse skin was studied immunohistochemically. Within 24 hours after wounding, and preceding the formation of granulation tissue, tenascin appeared in the basement membranes beneath epidermis and hair follicles adjacent to the wound edges and in the wounded edges of cutaneous muscle layer. Granulation tissue began to form in the wound space at about 1-2 days and was immediately covered by epidermis. Tenascin first appeared in the periphery of the granulation tissue beneath healing epidermis and around the wounded edges of cutaneous muscle layer. Then the tenascin-positive area extended into the inner region of granulation tissue. At about 5-7 days, all of the granulation tissue was intensely stained with anti-tenascin serum. Tenascin immunoreactivity decreased as granulation tissue was replaced with reconstructed dermal tissue at 7-14 days. In most cases, tenascin staining persisted longest in the dermis beneath the healing epidermis and at the juncture of healing edges of cutaneous muscle layer. It disappeared at about 10-14 days after wounding. These findings suggest that tenascin may play an important role in the seaming of wounded tissues.  相似文献   

6.
Repair of incision wounds closed by suturing is evaluated by the progressive gain in wound breaking strength. Previously the closure of open wounds in rats ingesting vanadate, an inhibitor of tyrosine phosphate phosphatases, was shown to occur with deposition of more uniformly organized collagen fiber bundles. The hypothesis of this study was that deposition of more uniformly organized collagen fibers would enhance the gain in wound breaking strength of incisional wounds. Six adult rats received vanadate-supplemented saline drinking water for 1 week before placement of two 6-cm, parallel, suture-closed wounds on their backs. Six control rats received identical wounds and were given saline drinking water. The drinking water regimen was continued for 1 week after wounding, and then wound strength was tested with a tensiometer and tissue samples were obtained for histologic evaluation. Wound breaking strength doubled in vanadate-treated rats compared with controls. Bright-field and polarized light microscopy showed that the connective tissue matrix of granulation tissue from control rats was oriented perpendicular to the surface of the skin. In contrast, the connective tissue matrix of granulation tissue from vanadate-treated rats was oriented parallel to the skin surface. The gap in granulation tissue between the edges of the wounds in the vanadate-treated rats was greater than that in controls. Electron microscopy showed that wounds in the vanadate-treated contained uniform collagen fibers that were 20 percent greater in diameter and more evenly spaced than they were in controls. It is proposed that these changes in the organization of collagen fibers within incisional wounds were responsible for the increased wound breaking strength observed in rats ingesting vanadate.  相似文献   

7.
J Berman  G Stoner  C Dawe  J Rice  E Kingsbury 《In vitro》1978,14(8):675-685
Nine cultures of fibroblast cell types and 13 epithelial-like cell types were maintained for 1 week in media supplemented with L-asborbic acid (50 microgram per ml). All fibroblast-like cultures produced extracellular fibers that stained positively by a silver-impregnation reticulin stain. Nine of the 13 epithelial-like cultures produced fibers that stained positively for reticulin. Nearly all cultures not supplemented with ascorbic acid showed no fiber staining. Those few lines that stained positively for reticulin in the absence of ascorbic-acid supplementation demonstrated only slight reticulin formation. Reticulin from one fibroblast culture and one epithelial culture was examined by electron microscopy, and the silver-impregnated fibrils were morphologically identical to collagen. The reticulin was digestible with collagenase, providing further evidence that the silver-impregnation reticulin stain identifies collagen in culture. The demonstartion of collagen can be performed easily in histology laboratories using Formalin-fixed cells, and provides a means of assaying a functional property of cells in culture which is characteristic of connective tissue fibroblasts in general as well as certain specialized epithelia.  相似文献   

8.
Summary Nine cultures of fibroblast cell types and 13 epithelial-like cell types were maintained for 1 week in media supplemented with L-asborbic acid (50 μg per ml). All fibroblast-like cultures produced extracellular fibers that stained positively by a silver-impregnation reticulin stain. Nine of the 13 epithelial-like cultures produced fibers that stained positively for reticulin. Nearly all cultures not supplemented with ascorbic acid showed no fiber staining. Those few lines that stained positively for reticulin in the absence of ascorbic-acid supplementation demonstrated only slight reticulin formation. Reticulin from one fibroblast culture and one epithelial culture was examined by electron microscopy, and the silver-impregnated fibrils were morphologically identical to collagen. The reticulin was digestible with collagenase, providing further evidence that the silver-impregnation reticulin stain identifies collagen in culture. The demonstration of collagen can be performed easily in histology laboratories using Formalin-fixed cells, and provides a means of assaying a functional property of cells in culture which is characteristic of connective tissue fibroblasts in general as well as certain specialized epithelia.  相似文献   

9.
The fibronexus ( FNX ), a very close transmembrane association of individual extracellular fibronectin fibers and actin microfilaments, was found previously at the substrate-binding surface of fibroblasts in tissue culture (Singer, 1. 1., 1979, Cell, 16:675-685). To determine whether the fibronexus might be involved in fibroblast adhesion during wound healing in vivo, we looked for co-localization of actin and fibronectin in granulation tissue formed within full-thickness guinea pig skin wounds. At 7-9 d, most of the actin fibers were observed to be coincident with congruent fibronectin fibers using double-label immunofluorescence microscopy. These fibronectin and actin fibers were co-localized at the myofibroblast surface surrounding the nucleus, and along attenuated myofibroblast processes which extended deeply into the extracellular matrix. This conspicuous co-distribution of fibronectin and actin fibers prompted us to look for fibronexuses at the myofibroblast surface with electron microscopy. We observed three kinds of FNXs : (a) tandem associations between the termini of individual extracellular fibronectin fibers and actin microfilament bundles at the tips of elongate myofibroblast processes, (b) plaque-like and, (c) track-like FNXs , in which parallel fibronectin and actin fibers were connected by perpendicular transmembranous fibrils. Goniometric studies on the external and internal components of these cross-linking fibrils showed that their membrane-associated ends are probably co-axial. Using immunoelectron microscopy on ultrathin cryosections, we confirmed that the densely staining external portion of these various FNXs does indeed contain fibronectin. The finding that these FNXs appear to connect collagen fibers to intracellular bundles of actin microfilaments is particularly significant. Our studies strongly suggest that the fibronexus is an important in vivo cell surface adhesion site functioning in wound repair, and perhaps within fibronectin-rich tissues during embryogenesis, tumor growth, and inflammation.  相似文献   

10.
Fetal tissue repair occurs without acute inflammation, prominent fibroplasia, or marked neovascularization. The fetal wound extracellular matrix is rich in hyaluronic acid (HA), while collagen is deposited in an organized normal dermal pattern. In various biologic systems, including regeneration and development, the controlled accumulation and subsequent degradation of hyaluronic acid is associated with distinct cellular and matrix events. Therefore, it is hypothesized that the abundance of hyaluronic acid in fetal wounds may influence cellular and/or matrix events such that tissue repair is highly organized and adult-like scarring does not occur. To test this hypothesis, the hyaluronic acid content of fetal rabbit wounds was reduced by specific degradation with Streptomyces hyaluronidase. Control wounds were treated with either enzyme buffer (n = 12) or denatured enzyme solution (n = 8) and exhibited a normal fetal healing response with scattered peripheral fibroblasts, a matrix of hyaluronic acid, and no infiltrating collagen. In marked contrast, the hyaluronidase-treated wounds (n = 14) demonstrated increased fibroblast infiltration, collagen deposition, and capillary formation. A significant reduction in the hyaluronic acid content of the hyaluronidase-treated wounds was confirmed biochemically. Since the degradation of hyaluronic acid resulted in an altered healing response, this study demonstrates that hyaluronic acid affects the cellular and matrix events in fetal healing and may be partially responsible for the unique qualities of this regenerative repair process.  相似文献   

11.
Dermal fibroblasts are essential for the repair of cutaneous wounds. Fibroblasts presumably use cell surface receptors of the integrin family during migration into a wound from the adjacent uninjured tissue and for the subsequent matrix repairs. We have investigated the possible roles of platelet-derived growth factor and inflammatory cytokines in the regulation of integrin expression on wound fibroblasts using a porcine cutaneous wound model and cultured human cells. Tissue specimens collected from 4-day pig wounds were stained with antibodies specific for the α1 and α5 integrin subunits. Staining for α1 was markedly decreased on fibroblasts adjacent to the wound and in the granulation tissue, while staining for α5 was clearly enhanced in both locations. Normal adult human dermal fibroblasts in culture express the integrins α1β1, a collagen receptor, and α5β1, a fibronectin receptor. Quantitative flow cytometry was used to measure cell surface integrin expression after treatment with platelet-derived growth factor (PDGF)-AA, PDGF-AB, or PDGF-BB. Each isoform of PDGF produced a significant decrease in the level of α1 present on the cell surface and an increase in the level of α5. Furthermore, PDGF-BB produced a corresponding decrease in α1 mRNA and an increase in α5 mRNA. In contrast, treatment with three inflammatory cytokines, IL-1β, TNF-α, and IFN-γ, produced clear increases in the levels of α1 and α5 present on the cell surface. Our observations suggest that the differential effects of PDGF and inflammatory cytokines may be part of the mechanism regulating the expression of α1 and α5 integrins by dermal fibroblasts during wound repair. © 1996 Wiley-Liss, Inc.  相似文献   

12.
Treating rats with vanadate, a nonspecific inhibitor of protein tyrosine phosphatases, optimizes the uniform packing of collagen fiber bundles in wound granulation tissue and doubles wound breaking strength in rat incisional wounds. The speculation is vanadate optimizes the packing of collagen fiber bundles through the orientation of newly arrived wound fibroblasts in the fibrin clot filling the defect. Segments of 14 day chick embryo tendons were placed on fibrin clots and maintained in organ culture with and without 30 microM vanadate. On day 7 explants were examined histologically and biochemically. Tendon fibroblast outgrowth from untreated explants migrated in a random fashion, while fibroblasts from vanadate-treated explants migrated out in linear arrays. Fibroblasts were elongated by 20% form vanadate treated explant compared to controls. Myosin ATPase, required for optimal cell motility, is optimized by the phosphorylation of its myosin light chain (MLC). Western blot analysis of lysates from the fibroblasts that migrated into the fibrin showed vanadate increased MLC-P levles. These findings support the notion that vanadate promotes the deposition of regular, parallel collagen fiber bundles by advancing the orientation of fibroblasts in parallel linear arrays early in the wound repair process.  相似文献   

13.
Wound contraction in soft tissue has been attributed to the activity of contractile fibroblasts containing actin microfilaments. Immunochemical staining at the electron microscopic level was used to demonstrate the presence of such cells in healing wounds from skin and oral mucosa. Biopsies of granulation tissue from 10 and 16 day old excision wounds in beagle palate mucoperiosteum and skin were fixed and 10 micrometer sections were treated with antiactin serum, peroxidase-anti peroxidase (PAP) and then incubated to reveal the localization of actin. Controls were prepared using non-immune serum or preabsorbed immune serum. Thin sections examined with the electron microscope revealed the presence of PAP particles associated with microfilament bundles beneath the plasma membrane and in processes of fibroblasts. Reaction was also associated with micropinocytotic vesicles at the cell surface. More reactive cells were seen in 16 day than in 10 day old wounds and there were greater numbers of these cells in skin than in oral mucoperiosteum. The results indicate that actin containing cells with the ultrastructural characteristics of contractile fibroblasts (myofibroblasts) are present in the granulation tissue of healing skin and oral mucosal wounds. Such cells may be responsible for the wound contraction observed clinically in the healing palatal mucoperiosteum.  相似文献   

14.
Fibronectin (FN) in hypertrophic scars and keloids   总被引:2,自引:0,他引:2  
Summary Fibronectin (FN) distribution was compared among samples of normal human dermis, hypertrophic scar, keloid, and granulation tissues from deep injuries. Localization was established by use of fibronectin antibodies and the indirect immunofluorescence method. Fresh-frozen tissue was sectioned on a cryostat and examined by epifluorescence. Hypertrophic scar and keloid demonstrated heavy deposition of FN, which conformed to the nodular characteristics of the lesions. Intense localization occurred in granulation tissue over fibroblasts which were stellate and vesiculated, and over small blood vessels. FN-staining was weak in areas over fibroblasts which were more rounded and nonvesiculated. Staining for FN was also minimal over the collagen in normal dermis and the deeper, larger collagen fascicles in the lesions. Fibroblasts cultured from normal dermis, hypertrophic scar, and keloid for 5–6 weeks were intensely stained for FN. Extracellular matrix was heavily positive in cultures from the lesions compared with those from normal dermis.Supported in part by NIH Research Grant 1 R01GM 25159  相似文献   

15.
The changes in cellular composition and vascularization of aseptic wounds on the rat skin were assessed quantitatively using the ocular net without treatment and during stimulation of repair processes by exogenous collagen. An intensive increase in the number of macrophages, endotheliocytes and fibroblasts was observed in wounds without treatment by the fifth day, with maximum vascularization of the granulation tissue occurring by the seventh day. During stimulation of repair processes by collagen the macrophage reaction, proliferation of endotheliocytes and fibroblasts and vascularization of wounds were activated earlier, while the stereotype relationships of the cellular components remained unchanged. The intercellular relationships of the wound healing process are discussed.  相似文献   

16.
Platelet-derived growth factor (PDGF) and transforming growth factor-beta (TGF-beta) markedly potentiate tissue repair in vivo. In the present experiments, both in vitro and in vivo responses to PDGF and TGF-beta were tested to identify mechanisms whereby these growth factors might each enhance the wound-healing response. Recombinant human PDGF B-chain homodimers (PDGF-BB) and TGF-beta 1 had identical dose-response curves in chemotactic assays with monocytes and fibroblasts as the natural proteins from platelets. Single applications of PDGF-BB (2 micrograms, 80 pmol) and TGF-beta 1 (20 micrograms, 600 pmol) were next applied to linear incisions in rats and each enhanced the strength required to disrupt the wounds at 5 d up to 212% of paired control wounds. Histological analysis of treated wounds demonstrated an in vivo chemotactic response of macrophages and fibroblasts to both PDGF-BB and to TGF-beta 1 but the response to TGF-beta 1 was significantly less than that observed with PDGF-BB. Marked increases of procollagen type I were observed by immunohistochemical staining in fibroblasts in treated wounds during the first week. The augmented breaking strength of TGF-beta 1 was not observed 2 and 3 wk after wounding. However, the positive influence of PDGF-BB on wound breaking strength persisted through the 7 wk of testing. Furthermore, PDGF-BB-treated wounds had persistently increased numbers of fibroblasts and granulation tissue through day 21, whereas the enhanced cellular influx in TGF-beta 1-treated wounds was not detectable beyond day 7. Wound macrophages and fibroblasts from PDGF-BB-treated wounds contained sharply increased levels of immunohistochemically detectable intracellular TGF-beta. Furthermore, PDGF-BB in vitro induced a marked, time-dependent stimulation of TGF-beta mRNA levels in cultured normal rat kidney fibroblasts. The results suggest that TGF-beta transiently attracts fibroblasts into the wound and may stimulate collagen synthesis directly. In contrast, PDGF is a more potent chemoattractant for wound macrophages and fibroblasts and may stimulate these cells to express endogenous growth factors, including TGF-beta, which, in turn, directly stimulate new collagen synthesis and sustained enhancement of wound healing over a more prolonged period of time.  相似文献   

17.
In this study, we investigated the role of nerve growth factor (NGF)-incorporated collagen on wound healing in rats. Full-thickness excision wounds were made on the back of female rats weighing about 150-160 g. Topical application of NGF-incorporated collagen, at a concentration of 1 microg/1.2 mg collagen/cm(2), once a day, for 10 days resulted in complete healing of wounds on the 15th day. The concentrations of collagen, hexosamine and uronic acid in the granulation tissue were determined. The NGF-incorporated collagen-treated rats required shorter duration for the healing with an increased rate of wound contraction. Histological and electron microscopical evaluations were also performed, which reveal the activation of fibroblasts and endoplasmic reticulum and therefore increased level of collagen synthesis due to NGF application. These results clearly indicate that the topical application of NGF-incorporated collagen enhanced the rate of healing of excision wounds.  相似文献   

18.
Hepatocyte growth factor (HGF) and macrophage-stimulating protein (MSP) are structurally related molecules that stimulate epithelial cell proliferation and migration. MSP also acts directly as a chemoattractant for resident macrophages. These activities are integral to the wound repair processes of inflammation, epithelialization and tissue remodelling. To begin to examine the involvement of HGF and MSP in healing of cutaneous wounds we have mapped the temporal expression of these two molecules and their receptors, MET and RON respectively, in adult rat excisional wounds. Four 2x2-cm full-thickness excisional wounds were created on the dorsum of 18 rats, and biopsies were taken through the wounds at 3, 5, 7, 14, 21, and 28 days postwounding. These biopsies were analyzed using immunofluorescent staining and in situ hybridization (ISH). The number of cells staining positively for HGF and MET significantly increased in response to wounding. HGF staining and mRNA peaked at 7 days postwounding whereas MET was upregulated earlier, peaking after 3 days. Both HGF and MET protein were observed in fibroblasts of the dermis and in the newly forming granulation tissue. ISH studies also revealed that fibroblasts at the wound edges and within the newly forming granulation tissue also expressed HGF and c-met mRNA. Immunofluorescent staining revealed both MSP and RON within the wound, with maximum staining occurring between 7 and 21 days for both the ligand and receptor. In addition, MSP co-localized with a small subset of ED1-positive cells (monocytes). In contrast, ED2-positive cells (macrophages) did not co-localize with MSP. Thus, increased expression of HGF, MSP and their receptors MET and RON respectively was observed in response to wounding. Furthermore, MSP co-localization with a subset of monocytes may confirm a role for MSP in the activation of mature macrophages, which may be important in tissue remodelling.  相似文献   

19.
To gain insight into the molecular mechanisms underlying the wound repair process, we searched for genes that are regulated by skin injury. For this purpose we generated a subtractive cDNA library from normal mouse back skin and 1-day full-thickness excisional wounds. One of the differentially expressed genes encodes the chemokine C10. Using Northern blotting, RNase protection assay and Western blotting, we confirmed the injury-induced expression of C10 at the mRNA and protein level. Maximal levels of C10 mRNA and protein were seen at day 1 after wounding, and expression levels subsequently declined. In situ hybridization and immunohistochemistry revealed expression of C10 in macrophages of the clot and the granulation tissue as well as in keratinocytes of the epidermis and the hair follicles at the wound edge. Since C10 is a potent chemoattractant for macrophages, our results suggest that this chemokine contributes to the strong macrophage influx observed in the healing skin wound.  相似文献   

20.
Wound healing activity of methanol extract of Alternanthera brasiliana [5% (w/w) ointment] was evaluated in experimental burn wound model in rats. Healing potential was assessed by the rate of wound contraction, estimation of anti-oxidants like catalase, superoxide dismutase, reduced glutathione, protein, vitamin C and hydroxyproline, along with histopathological examination on 8th day post wounding. The statistical data indicated that there was significant increase in wound contraction along with augmented level of antioxidants in granulation tissues in A. brasiliana treated group. Histopathological assessment of the granulation tissue revealed formation of epidermis with keratin layer and deposition of collagen fibers after treatment with the plant extract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号